{"title":"E","authors":"A. Mohamed, D. Chenaf, S. El-Shahed","doi":"10.1201/9781003211396-5","DOIUrl":null,"url":null,"abstract":".G A bstract. O ne form ofthe inclusion-exclusion principle assertsthat if A and B are functions of (cid:12)nite sets then the form ulas A ( S ) = P T (cid:18) S B ( T ) and B ( S ) = P T (cid:18) S ( (cid:0) 1) j S j(cid:0) j T j A ( T ) are equivalent. If we replace B ( S ) by ( (cid:0) 1) j S j B ( S ) then these form ulastake on the sym m etric form which we call sym m etric inclusion-exclusion . W e study instances of sym m etric inclusion-exclusion in which thefunctions A and B havecom binatorialorprobabilistic interpretations.In particular,we study casesrelated to the P(cid:19)olya-Eggenberger urn m odelin which A ( S )and B ( S )depend only on the cardinality of S .","PeriodicalId":275113,"journal":{"name":"DARE’s Dictionary of Environmental Sciences and Engineering","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E\",\"authors\":\"A. Mohamed, D. Chenaf, S. El-Shahed\",\"doi\":\"10.1201/9781003211396-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\".G A bstract. O ne form ofthe inclusion-exclusion principle assertsthat if A and B are functions of (cid:12)nite sets then the form ulas A ( S ) = P T (cid:18) S B ( T ) and B ( S ) = P T (cid:18) S ( (cid:0) 1) j S j(cid:0) j T j A ( T ) are equivalent. If we replace B ( S ) by ( (cid:0) 1) j S j B ( S ) then these form ulastake on the sym m etric form which we call sym m etric inclusion-exclusion . W e study instances of sym m etric inclusion-exclusion in which thefunctions A and B havecom binatorialorprobabilistic interpretations.In particular,we study casesrelated to the P(cid:19)olya-Eggenberger urn m odelin which A ( S )and B ( S )depend only on the cardinality of S .\",\"PeriodicalId\":275113,\"journal\":{\"name\":\"DARE’s Dictionary of Environmental Sciences and Engineering\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DARE’s Dictionary of Environmental Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781003211396-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DARE’s Dictionary of Environmental Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781003211396-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要。包含-不相容原理的一种形式断言,如果A和B是(cid:12)个集合的函数,则形式A (S) = P T (cid:18) S B (T)和B (S) = P T (cid:18) S ((cid:0) 1) j S j(cid:0) j T j A (T)是等价的。如果我们用((cid:0) 1) j S j B (S)来代替B (S)那么这些形式就变成了矩阵形式我们称之为矩阵的包容-排斥。我们研究了函数A和函数B具有二元或概率解释的系统包含-不相容的实例。特别地,我们研究了与P(cid:19)olya-Eggenberger模型相关的情况,其中A (S)和B (S)仅依赖于S的基数。
.G A bstract. O ne form ofthe inclusion-exclusion principle assertsthat if A and B are functions of (cid:12)nite sets then the form ulas A ( S ) = P T (cid:18) S B ( T ) and B ( S ) = P T (cid:18) S ( (cid:0) 1) j S j(cid:0) j T j A ( T ) are equivalent. If we replace B ( S ) by ( (cid:0) 1) j S j B ( S ) then these form ulastake on the sym m etric form which we call sym m etric inclusion-exclusion . W e study instances of sym m etric inclusion-exclusion in which thefunctions A and B havecom binatorialorprobabilistic interpretations.In particular,we study casesrelated to the P(cid:19)olya-Eggenberger urn m odelin which A ( S )and B ( S )depend only on the cardinality of S .