使用基于搜索的应用程序分析自动化性能瓶颈检测

Du Shen, Qi Luo, D. Poshyvanyk, M. Grechanik
{"title":"使用基于搜索的应用程序分析自动化性能瓶颈检测","authors":"Du Shen, Qi Luo, D. Poshyvanyk, M. Grechanik","doi":"10.1145/2771783.2771816","DOIUrl":null,"url":null,"abstract":"Application profiling is an important performance analysis technique, when an application under test is analyzed dynamically to determine its space and time complexities and the usage of its instructions. A big and important challenge is to profile nontrivial web applications with large numbers of combinations of their input parameter values. Identifying and understanding particular subsets of inputs leading to performance bottlenecks is mostly manual, intellectually intensive and laborious procedure. We propose a novel approach for automating performance bottleneck detection using search-based input-sensitive application profiling. Our key idea is to use a genetic algorithm as a search heuristic for obtaining combinations of input parameter values that maximizes a fitness function that represents the elapsed execution time of the application. We implemented our approach, coined as Genetic Algorithm-driven Profiler (GA-Prof) that combines a search-based heuristic with contrast data mining of execution traces to accurately determine performance bottlenecks. We evaluated GA-Prof to determine how effectively and efficiently it can detect injected performance bottlenecks into three popular open source web applications. Our results demonstrate that GA-Prof efficiently explores a large space of input value combinations while automatically and accurately detecting performance bottlenecks, thus suggesting that it is effective for automatic profiling.","PeriodicalId":264859,"journal":{"name":"Proceedings of the 2015 International Symposium on Software Testing and Analysis","volume":"1102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Automating performance bottleneck detection using search-based application profiling\",\"authors\":\"Du Shen, Qi Luo, D. Poshyvanyk, M. Grechanik\",\"doi\":\"10.1145/2771783.2771816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Application profiling is an important performance analysis technique, when an application under test is analyzed dynamically to determine its space and time complexities and the usage of its instructions. A big and important challenge is to profile nontrivial web applications with large numbers of combinations of their input parameter values. Identifying and understanding particular subsets of inputs leading to performance bottlenecks is mostly manual, intellectually intensive and laborious procedure. We propose a novel approach for automating performance bottleneck detection using search-based input-sensitive application profiling. Our key idea is to use a genetic algorithm as a search heuristic for obtaining combinations of input parameter values that maximizes a fitness function that represents the elapsed execution time of the application. We implemented our approach, coined as Genetic Algorithm-driven Profiler (GA-Prof) that combines a search-based heuristic with contrast data mining of execution traces to accurately determine performance bottlenecks. We evaluated GA-Prof to determine how effectively and efficiently it can detect injected performance bottlenecks into three popular open source web applications. Our results demonstrate that GA-Prof efficiently explores a large space of input value combinations while automatically and accurately detecting performance bottlenecks, thus suggesting that it is effective for automatic profiling.\",\"PeriodicalId\":264859,\"journal\":{\"name\":\"Proceedings of the 2015 International Symposium on Software Testing and Analysis\",\"volume\":\"1102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Symposium on Software Testing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2771783.2771816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2771783.2771816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

应用程序概要分析是一项重要的性能分析技术,当动态分析被测应用程序以确定其空间和时间复杂性及其指令的使用情况时。一个巨大而重要的挑战是分析具有大量输入参数值组合的重要web应用程序。识别和理解导致性能瓶颈的特定输入子集主要是人工的、智力密集型的和费力的过程。我们提出了一种使用基于搜索的输入敏感应用程序分析来自动化性能瓶颈检测的新方法。我们的关键思想是使用遗传算法作为搜索启发式算法来获得输入参数值的组合,这些值可以最大化表示应用程序运行时间的适应度函数。我们实现了我们的方法,称为遗传算法驱动的分析器(GA-Prof),它结合了基于搜索的启发式方法和执行跟踪的对比数据挖掘,以准确地确定性能瓶颈。我们对GA-Prof进行了评估,以确定它在三种流行的开源web应用程序中检测注入性能瓶颈的有效性和效率。我们的研究结果表明,GA-Prof有效地探索了大量的输入值组合空间,同时自动准确地检测性能瓶颈,从而表明它对自动分析是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automating performance bottleneck detection using search-based application profiling
Application profiling is an important performance analysis technique, when an application under test is analyzed dynamically to determine its space and time complexities and the usage of its instructions. A big and important challenge is to profile nontrivial web applications with large numbers of combinations of their input parameter values. Identifying and understanding particular subsets of inputs leading to performance bottlenecks is mostly manual, intellectually intensive and laborious procedure. We propose a novel approach for automating performance bottleneck detection using search-based input-sensitive application profiling. Our key idea is to use a genetic algorithm as a search heuristic for obtaining combinations of input parameter values that maximizes a fitness function that represents the elapsed execution time of the application. We implemented our approach, coined as Genetic Algorithm-driven Profiler (GA-Prof) that combines a search-based heuristic with contrast data mining of execution traces to accurately determine performance bottlenecks. We evaluated GA-Prof to determine how effectively and efficiently it can detect injected performance bottlenecks into three popular open source web applications. Our results demonstrate that GA-Prof efficiently explores a large space of input value combinations while automatically and accurately detecting performance bottlenecks, thus suggesting that it is effective for automatic profiling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信