基于变量相关性的模糊C均值缺失值推定

Farahida Hanim Mausor, J. Jaafar, S. Taib
{"title":"基于变量相关性的模糊C均值缺失值推定","authors":"Farahida Hanim Mausor, J. Jaafar, S. Taib","doi":"10.1109/ICCI51257.2020.9247675","DOIUrl":null,"url":null,"abstract":"Missing values is one of the problems in real-world data and an unavoidable one. It should be handled carefully in a pre-processing technique before being processed in a data mining technique. This paper proposes an imputation technique of Fuzzy C Mean (FCM) with the improved version. The aim is to reduce errors and increase the accuracy of the processing technique. In this paper, the correlation technique was applied before the process of FCM to choose the variables with a certain criterion to be processed in FCM imputation. The result shows that the proposed technique outperforms the conventional technique and useful to overcome the disadvantages of the FCM technique.","PeriodicalId":194158,"journal":{"name":"2020 International Conference on Computational Intelligence (ICCI)","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Missing Values Imputation Using Fuzzy C Means Based On Correlation of Variable\",\"authors\":\"Farahida Hanim Mausor, J. Jaafar, S. Taib\",\"doi\":\"10.1109/ICCI51257.2020.9247675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Missing values is one of the problems in real-world data and an unavoidable one. It should be handled carefully in a pre-processing technique before being processed in a data mining technique. This paper proposes an imputation technique of Fuzzy C Mean (FCM) with the improved version. The aim is to reduce errors and increase the accuracy of the processing technique. In this paper, the correlation technique was applied before the process of FCM to choose the variables with a certain criterion to be processed in FCM imputation. The result shows that the proposed technique outperforms the conventional technique and useful to overcome the disadvantages of the FCM technique.\",\"PeriodicalId\":194158,\"journal\":{\"name\":\"2020 International Conference on Computational Intelligence (ICCI)\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Intelligence (ICCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI51257.2020.9247675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Intelligence (ICCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI51257.2020.9247675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

缺失值是现实数据中不可避免的问题之一。在数据挖掘技术中进行处理之前,应该在预处理技术中仔细处理它。本文提出了一种改进版本的模糊C均值(FCM)插值技术。目的是减少误差,提高加工技术的精度。本文在FCM处理前,采用相关技术选择具有一定准则的变量,进行FCM插补处理。结果表明,该方法优于传统方法,可有效克服FCM方法的缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Missing Values Imputation Using Fuzzy C Means Based On Correlation of Variable
Missing values is one of the problems in real-world data and an unavoidable one. It should be handled carefully in a pre-processing technique before being processed in a data mining technique. This paper proposes an imputation technique of Fuzzy C Mean (FCM) with the improved version. The aim is to reduce errors and increase the accuracy of the processing technique. In this paper, the correlation technique was applied before the process of FCM to choose the variables with a certain criterion to be processed in FCM imputation. The result shows that the proposed technique outperforms the conventional technique and useful to overcome the disadvantages of the FCM technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信