Bo Sun, Song Lai, Congcong Xu, Rong Xiao, Yungang Wei, Yongkang Xiao
{"title":"不同人格特质学生网络学习行为和眼动的差异","authors":"Bo Sun, Song Lai, Congcong Xu, Rong Xiao, Yungang Wei, Yongkang Xiao","doi":"10.1145/3139513.3139527","DOIUrl":null,"url":null,"abstract":"The information technologies are integrated into education so that mass data is available reflecting each action of students in online environments. Numerous studies have exploited these data to do the learning analytics.In this paper, we aim at achieving the show of personalized indicators for students per personality trait on the learning analytics dashboard (LAD) and present the preliminary results. First, we employ learning behavior engagement (LBE) to describe students' learning behaviors, exploited to analyze the significant differences among students having different personality traits. In experiments, fifteen behavioral indicators are tested. The experimental results show that there are significant differences about some behavioral indicators among personality traits. Second, some of these behavioral indicators are presented on the LAD and distributed in each area of interest (AOI). Hence, students can visualize their behavioral data that they care about in AOIs anytime in the learning process. Through the analysis of eye-movement including the fixation duration, fixation count, heat map and track map, we have found that there are significant differences about some visual indicators in AOIs. This is partly consistent with the results of behavioral indicators.","PeriodicalId":441030,"journal":{"name":"Proceedings of the 1st ACM SIGCHI International Workshop on Multimodal Interaction for Education","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Differences of online learning behaviors and eye-movement between students having different personality traits\",\"authors\":\"Bo Sun, Song Lai, Congcong Xu, Rong Xiao, Yungang Wei, Yongkang Xiao\",\"doi\":\"10.1145/3139513.3139527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The information technologies are integrated into education so that mass data is available reflecting each action of students in online environments. Numerous studies have exploited these data to do the learning analytics.In this paper, we aim at achieving the show of personalized indicators for students per personality trait on the learning analytics dashboard (LAD) and present the preliminary results. First, we employ learning behavior engagement (LBE) to describe students' learning behaviors, exploited to analyze the significant differences among students having different personality traits. In experiments, fifteen behavioral indicators are tested. The experimental results show that there are significant differences about some behavioral indicators among personality traits. Second, some of these behavioral indicators are presented on the LAD and distributed in each area of interest (AOI). Hence, students can visualize their behavioral data that they care about in AOIs anytime in the learning process. Through the analysis of eye-movement including the fixation duration, fixation count, heat map and track map, we have found that there are significant differences about some visual indicators in AOIs. This is partly consistent with the results of behavioral indicators.\",\"PeriodicalId\":441030,\"journal\":{\"name\":\"Proceedings of the 1st ACM SIGCHI International Workshop on Multimodal Interaction for Education\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM SIGCHI International Workshop on Multimodal Interaction for Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3139513.3139527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGCHI International Workshop on Multimodal Interaction for Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139513.3139527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Differences of online learning behaviors and eye-movement between students having different personality traits
The information technologies are integrated into education so that mass data is available reflecting each action of students in online environments. Numerous studies have exploited these data to do the learning analytics.In this paper, we aim at achieving the show of personalized indicators for students per personality trait on the learning analytics dashboard (LAD) and present the preliminary results. First, we employ learning behavior engagement (LBE) to describe students' learning behaviors, exploited to analyze the significant differences among students having different personality traits. In experiments, fifteen behavioral indicators are tested. The experimental results show that there are significant differences about some behavioral indicators among personality traits. Second, some of these behavioral indicators are presented on the LAD and distributed in each area of interest (AOI). Hence, students can visualize their behavioral data that they care about in AOIs anytime in the learning process. Through the analysis of eye-movement including the fixation duration, fixation count, heat map and track map, we have found that there are significant differences about some visual indicators in AOIs. This is partly consistent with the results of behavioral indicators.