交叉挖掘二进制和数值属性

G. C. Garriga, H. Heikinheimo, J. K. Seppänen
{"title":"交叉挖掘二进制和数值属性","authors":"G. C. Garriga, H. Heikinheimo, J. K. Seppänen","doi":"10.1109/ICDM.2007.32","DOIUrl":null,"url":null,"abstract":"We consider the problem of relating itemsets mined on binary attributes of a data set to numerical attributes of the same data. An example is biogeographical data, where the numerical attributes correspond to environmental variables and the binary attributes encode the presence or absence of species in different environments. From the viewpoint of itemset mining, the task is to select a small collection of interesting itemsets using the numerical attributes; from the viewpoint of the numerical attributes, the task is to constrain the search for local patterns (e.g. clusters) using the binary attributes. We give a formal definition of the problem, discuss it theoretically, give a simple constant-factor approximation algorithm, and show by experiments on biogeographical data that the algorithm can capture interesting patterns that would not have been found using either itemset mining or clustering alone.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Cross-Mining Binary and Numerical Attributes\",\"authors\":\"G. C. Garriga, H. Heikinheimo, J. K. Seppänen\",\"doi\":\"10.1109/ICDM.2007.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of relating itemsets mined on binary attributes of a data set to numerical attributes of the same data. An example is biogeographical data, where the numerical attributes correspond to environmental variables and the binary attributes encode the presence or absence of species in different environments. From the viewpoint of itemset mining, the task is to select a small collection of interesting itemsets using the numerical attributes; from the viewpoint of the numerical attributes, the task is to constrain the search for local patterns (e.g. clusters) using the binary attributes. We give a formal definition of the problem, discuss it theoretically, give a simple constant-factor approximation algorithm, and show by experiments on biogeographical data that the algorithm can capture interesting patterns that would not have been found using either itemset mining or clustering alone.\",\"PeriodicalId\":233758,\"journal\":{\"name\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2007.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们考虑了在数据集的二进制属性上挖掘的项集与同一数据的数值属性之间的关联问题。一个例子是生物地理数据,其中数字属性对应于环境变量,二进制属性编码不同环境中物种的存在或不存在。从项目集挖掘的角度来看,任务是使用数字属性选择一个有趣的项目集的小集合;从数值属性的角度来看,任务是使用二进制属性约束局部模式(例如簇)的搜索。我们给出了问题的正式定义,从理论上进行了讨论,给出了一个简单的常因子近似算法,并通过对生物地理数据的实验表明,该算法可以捕捉到仅使用项集挖掘或聚类无法发现的有趣模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Mining Binary and Numerical Attributes
We consider the problem of relating itemsets mined on binary attributes of a data set to numerical attributes of the same data. An example is biogeographical data, where the numerical attributes correspond to environmental variables and the binary attributes encode the presence or absence of species in different environments. From the viewpoint of itemset mining, the task is to select a small collection of interesting itemsets using the numerical attributes; from the viewpoint of the numerical attributes, the task is to constrain the search for local patterns (e.g. clusters) using the binary attributes. We give a formal definition of the problem, discuss it theoretically, give a simple constant-factor approximation algorithm, and show by experiments on biogeographical data that the algorithm can capture interesting patterns that would not have been found using either itemset mining or clustering alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信