多输入单输出递推时间序列模型的保证稳定性

Kamuran Turksoy, E. S. Bayrak, L. Quinn, E. Littlejohn, A. Çinar
{"title":"多输入单输出递推时间序列模型的保证稳定性","authors":"Kamuran Turksoy, E. S. Bayrak, L. Quinn, E. Littlejohn, A. Çinar","doi":"10.1109/ACC.2013.6579817","DOIUrl":null,"url":null,"abstract":"Recursive time series models can describe effectively and accurately complex systems with time-varying parameters. These simple models can be used in forecasting and control systems. However, these models may be unstable because of plant and measurement noise even when the process is known to be stable. In this paper, we propose an approach to guarantee the stability of time series models by using the Gershgorin Circle Theorem. Data from real patients with Type 1 Diabetes are used to illustrate the performance of the proposed approach. Results show that the proposed method provides stable models. The method can be easily implemented to single- or multi-input-output time series modeling and subspace identification.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Guaranteed stability of recursive multi-input-single-output time series models\",\"authors\":\"Kamuran Turksoy, E. S. Bayrak, L. Quinn, E. Littlejohn, A. Çinar\",\"doi\":\"10.1109/ACC.2013.6579817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recursive time series models can describe effectively and accurately complex systems with time-varying parameters. These simple models can be used in forecasting and control systems. However, these models may be unstable because of plant and measurement noise even when the process is known to be stable. In this paper, we propose an approach to guarantee the stability of time series models by using the Gershgorin Circle Theorem. Data from real patients with Type 1 Diabetes are used to illustrate the performance of the proposed approach. Results show that the proposed method provides stable models. The method can be easily implemented to single- or multi-input-output time series modeling and subspace identification.\",\"PeriodicalId\":145065,\"journal\":{\"name\":\"2013 American Control Conference\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2013.6579817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6579817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

递归时间序列模型可以有效、准确地描述具有时变参数的复杂系统。这些简单的模型可用于预测和控制系统。然而,即使已知过程是稳定的,这些模型也可能因为工厂和测量噪声而不稳定。本文提出了一种利用Gershgorin圆定理来保证时间序列模型稳定性的方法。来自真实的1型糖尿病患者的数据被用来说明所提出的方法的性能。结果表明,该方法能提供稳定的模型。该方法可方便地实现单输入输出或多输入输出时间序列建模和子空间识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Guaranteed stability of recursive multi-input-single-output time series models
Recursive time series models can describe effectively and accurately complex systems with time-varying parameters. These simple models can be used in forecasting and control systems. However, these models may be unstable because of plant and measurement noise even when the process is known to be stable. In this paper, we propose an approach to guarantee the stability of time series models by using the Gershgorin Circle Theorem. Data from real patients with Type 1 Diabetes are used to illustrate the performance of the proposed approach. Results show that the proposed method provides stable models. The method can be easily implemented to single- or multi-input-output time series modeling and subspace identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信