粗粒度并行下一个元素搜索

Albert Chan, F. Dehne, A. Rau-Chaplin
{"title":"粗粒度并行下一个元素搜索","authors":"Albert Chan, F. Dehne, A. Rau-Chaplin","doi":"10.1109/IPPS.1997.580919","DOIUrl":null,"url":null,"abstract":"The authors present a parallel algorithm for solving the next element search problem on a set of line segments, using a BSP like model referred to as the coarse grained multicomputer (CGM). The algorithm requires O(1) communication rounds (h-relations with h=O(n/p)), O((n/p) log n) local computation, and O((n/p) log n) storage per processor. The result implies solutions to the point location, trapezoidal decomposition and polygon triangulation problems. A simplified version for axis parallel segments requires only O(n/p) storage per processor, and they discuss an implementation of this version. As in a previous paper by Develliers and Fabri (1993), their algorithm is based on a distributed implementation of segment trees which are of size O(n log n). The paper improves on the work of Develliers and Fabri which presented a CGM algorithm for the special case of trapezoidal decomposition only and requires O((n/p)*log p*log n) local computation.","PeriodicalId":145892,"journal":{"name":"Proceedings 11th International Parallel Processing Symposium","volume":"243 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Coarse grained parallel next element search\",\"authors\":\"Albert Chan, F. Dehne, A. Rau-Chaplin\",\"doi\":\"10.1109/IPPS.1997.580919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present a parallel algorithm for solving the next element search problem on a set of line segments, using a BSP like model referred to as the coarse grained multicomputer (CGM). The algorithm requires O(1) communication rounds (h-relations with h=O(n/p)), O((n/p) log n) local computation, and O((n/p) log n) storage per processor. The result implies solutions to the point location, trapezoidal decomposition and polygon triangulation problems. A simplified version for axis parallel segments requires only O(n/p) storage per processor, and they discuss an implementation of this version. As in a previous paper by Develliers and Fabri (1993), their algorithm is based on a distributed implementation of segment trees which are of size O(n log n). The paper improves on the work of Develliers and Fabri which presented a CGM algorithm for the special case of trapezoidal decomposition only and requires O((n/p)*log p*log n) local computation.\",\"PeriodicalId\":145892,\"journal\":{\"name\":\"Proceedings 11th International Parallel Processing Symposium\",\"volume\":\"243 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Parallel Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPPS.1997.580919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1997.580919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

作者提出了一种求解线段集上的下一元素搜索问题的并行算法,该算法使用一种类似BSP的模型,称为粗粒度多计算机(CGM)。该算法需要O(1)轮通信(h-关系,h=O(n/p)), O((n/p) log n)个局部计算,以及O((n/p) log n)个处理器存储。该结果为点定位、梯形分解和多边形三角剖分问题提供了解决方案。轴平行段的简化版本只需要每个处理器O(n/p)存储空间,他们讨论了这个版本的实现。与develers和Fabri(1993)之前的论文一样,他们的算法基于大小为O(n log n)的段树的分布式实现。本文改进了develers和Fabri的工作,该工作仅针对梯形分解的特殊情况提出了CGM算法,并且需要O((n/p)*log p*log n)局部计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coarse grained parallel next element search
The authors present a parallel algorithm for solving the next element search problem on a set of line segments, using a BSP like model referred to as the coarse grained multicomputer (CGM). The algorithm requires O(1) communication rounds (h-relations with h=O(n/p)), O((n/p) log n) local computation, and O((n/p) log n) storage per processor. The result implies solutions to the point location, trapezoidal decomposition and polygon triangulation problems. A simplified version for axis parallel segments requires only O(n/p) storage per processor, and they discuss an implementation of this version. As in a previous paper by Develliers and Fabri (1993), their algorithm is based on a distributed implementation of segment trees which are of size O(n log n). The paper improves on the work of Develliers and Fabri which presented a CGM algorithm for the special case of trapezoidal decomposition only and requires O((n/p)*log p*log n) local computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信