有效布伦尼尔定理:在可计算分析和算法随机性中的应用

Alex Galicki
{"title":"有效布伦尼尔定理:在可计算分析和算法随机性中的应用","authors":"Alex Galicki","doi":"10.1145/2933575.2933596","DOIUrl":null,"url":null,"abstract":"Brenier’s theorem is a landmark result in Optimal Transport. It postulates existence, monotonicity and uniqueness of an optimal map, with respect to the quadratic cost function, between two given probability measures (under some weak regularity conditions). We prove an effective version of Brenier’s theorem: we show that for any two computable absolutely continuous measures on ℝ<sup>n</sup>, µ and ν, with some restrictions on their support, there exists a computable convex function ϕ, whose gradient ∇ϕ is the optimal transport map between µ and ν.The main insight of the paper is the idea that an effective Brenier’s theorem can be used to construct effective monotone maps on ℝ<sup>n</sup> with desired (non-)differentiability properties. We use it to solve several problems at the interface of algorithmic randomness and computable analysis. In particular, we show that z ∈ ℝ<sup>n</sup> is computably random if and only if every computable monotone function on ℝ<sup>n</sup> is differentiable at z. Furthermore, we prove the converse of the effective Aleksandrov theorem (Galicki 2015): we show that if z ∈ ℝ<sup>n</sup> is not computably random, there exists a computable convex function that is not twice differentiable at z.Finally, we prove several new characterisations of computable randomness in ℝ<sup>n</sup>: in terms of differentiability of computable measures, in terms of a particular Monge-Ampère equation and in terms of critical values of computable Lipschitz functions.","PeriodicalId":206395,"journal":{"name":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effective Brenier Theorem : Applications to Computable Analysis and Algorithmic Randomness\",\"authors\":\"Alex Galicki\",\"doi\":\"10.1145/2933575.2933596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brenier’s theorem is a landmark result in Optimal Transport. It postulates existence, monotonicity and uniqueness of an optimal map, with respect to the quadratic cost function, between two given probability measures (under some weak regularity conditions). We prove an effective version of Brenier’s theorem: we show that for any two computable absolutely continuous measures on ℝ<sup>n</sup>, µ and ν, with some restrictions on their support, there exists a computable convex function ϕ, whose gradient ∇ϕ is the optimal transport map between µ and ν.The main insight of the paper is the idea that an effective Brenier’s theorem can be used to construct effective monotone maps on ℝ<sup>n</sup> with desired (non-)differentiability properties. We use it to solve several problems at the interface of algorithmic randomness and computable analysis. In particular, we show that z ∈ ℝ<sup>n</sup> is computably random if and only if every computable monotone function on ℝ<sup>n</sup> is differentiable at z. Furthermore, we prove the converse of the effective Aleksandrov theorem (Galicki 2015): we show that if z ∈ ℝ<sup>n</sup> is not computably random, there exists a computable convex function that is not twice differentiable at z.Finally, we prove several new characterisations of computable randomness in ℝ<sup>n</sup>: in terms of differentiability of computable measures, in terms of a particular Monge-Ampère equation and in terms of critical values of computable Lipschitz functions.\",\"PeriodicalId\":206395,\"journal\":{\"name\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2933575.2933596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933575.2933596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Brenier定理是最优运输中的一个里程碑式的结果。它假定在两个给定的概率测度(在一些弱正则性条件下)之间,关于二次代价函数的最优映射的存在性、单调性和唯一性。我们证明了Brenier定理的一个有效版本:我们证明了对于任意两个可计算的绝对连续测度,μ和ν,在它们的支持上有一定的限制,存在一个可计算的凸函数φ,其梯度∇φ是μ和ν之间的最优传输映射。本文的主要观点是一个有效的布伦尼尔定理可以用来构造具有期望(非)可微性的有效单调映射。我们用它来解决算法随机性和可计算分析的接口问题。特别地,我们证明了z∈f n是可计算随机的当且仅当在z上每个可计算单调函数都是可微的。进一步,我们证明了有效Aleksandrov定理的逆(Galicki 2015):我们证明了如果z∈f n是不可计算随机的,存在一个在z上不是二次可微的可计算凸函数。最后,我们证明了若干关于可计算随机性的新特征:在可计算测度的可微性方面,在一个特定的monge - amp方程方面,在可计算的Lipschitz函数的临界值方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Brenier Theorem : Applications to Computable Analysis and Algorithmic Randomness
Brenier’s theorem is a landmark result in Optimal Transport. It postulates existence, monotonicity and uniqueness of an optimal map, with respect to the quadratic cost function, between two given probability measures (under some weak regularity conditions). We prove an effective version of Brenier’s theorem: we show that for any two computable absolutely continuous measures on ℝn, µ and ν, with some restrictions on their support, there exists a computable convex function ϕ, whose gradient ∇ϕ is the optimal transport map between µ and ν.The main insight of the paper is the idea that an effective Brenier’s theorem can be used to construct effective monotone maps on ℝn with desired (non-)differentiability properties. We use it to solve several problems at the interface of algorithmic randomness and computable analysis. In particular, we show that z ∈ ℝn is computably random if and only if every computable monotone function on ℝn is differentiable at z. Furthermore, we prove the converse of the effective Aleksandrov theorem (Galicki 2015): we show that if z ∈ ℝn is not computably random, there exists a computable convex function that is not twice differentiable at z.Finally, we prove several new characterisations of computable randomness in ℝn: in terms of differentiability of computable measures, in terms of a particular Monge-Ampère equation and in terms of critical values of computable Lipschitz functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信