基于SVM和CNN的k-mer频率特征的病毒亚型分类分析

V. M. Arceda
{"title":"基于SVM和CNN的k-mer频率特征的病毒亚型分类分析","authors":"V. M. Arceda","doi":"10.24215/16666038.20.e11","DOIUrl":null,"url":null,"abstract":"Viral subtyping classification is very relevant for the appropriate diagnosis and treatment of illnesses. The most used tools are based on alignment-based methods, nevertheless, they are becoming too slow due to the increase of genomic data; for that reason, alignmentfree methods have emerged as an alternative. In this work, we analyzed four alignment-free algorithms: two methods use k-mer frequencies (Kameris and Castor-KRFE); the third method used a frequency chaos game representation of a DNA with CNNs; and the last one processes DNA sequences as a digital signal (ML-DSP). From the comparison, Kameris and Castor-KRFE outperformed the rest, followed by the method based on CNNs.","PeriodicalId":188846,"journal":{"name":"J. Comput. Sci. Technol.","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An analysis of k-mer frequency features with SVM and CNN for viral subtyping classification\",\"authors\":\"V. M. Arceda\",\"doi\":\"10.24215/16666038.20.e11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Viral subtyping classification is very relevant for the appropriate diagnosis and treatment of illnesses. The most used tools are based on alignment-based methods, nevertheless, they are becoming too slow due to the increase of genomic data; for that reason, alignmentfree methods have emerged as an alternative. In this work, we analyzed four alignment-free algorithms: two methods use k-mer frequencies (Kameris and Castor-KRFE); the third method used a frequency chaos game representation of a DNA with CNNs; and the last one processes DNA sequences as a digital signal (ML-DSP). From the comparison, Kameris and Castor-KRFE outperformed the rest, followed by the method based on CNNs.\",\"PeriodicalId\":188846,\"journal\":{\"name\":\"J. Comput. Sci. Technol.\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Sci. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24215/16666038.20.e11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24215/16666038.20.e11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

病毒亚型分类对疾病的正确诊断和治疗具有重要意义。最常用的工具是基于比对的方法,然而,由于基因组数据的增加,它们变得太慢了;出于这个原因,不需要对齐的方法已经成为一种替代方法。在这项工作中,我们分析了四种无对准算法:两种方法使用k-mer频率(Kameris和Castor-KRFE);第三种方法是用cnn对DNA进行频率混沌博弈表示;最后一个是将DNA序列作为数字信号处理(ML-DSP)。从比较来看,Kameris和Castor-KRFE方法表现最好,其次是基于cnn的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analysis of k-mer frequency features with SVM and CNN for viral subtyping classification
Viral subtyping classification is very relevant for the appropriate diagnosis and treatment of illnesses. The most used tools are based on alignment-based methods, nevertheless, they are becoming too slow due to the increase of genomic data; for that reason, alignmentfree methods have emerged as an alternative. In this work, we analyzed four alignment-free algorithms: two methods use k-mer frequencies (Kameris and Castor-KRFE); the third method used a frequency chaos game representation of a DNA with CNNs; and the last one processes DNA sequences as a digital signal (ML-DSP). From the comparison, Kameris and Castor-KRFE outperformed the rest, followed by the method based on CNNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信