fpga实现的自适应神经网络射频功率放大器建模

M. Bahoura, Chan-Wang Park
{"title":"fpga实现的自适应神经网络射频功率放大器建模","authors":"M. Bahoura, Chan-Wang Park","doi":"10.1109/NEWCAS.2011.5981211","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an architecture for FPGA-implementation of neural adaptive neural network RF power behavioral modeling. The real-valued time-delay neural network (RVTDNN) and the backpropagation (BP) learning algorithm were implemented on FPGA using Xilinx System Generator for DSP and the Virtex-6 FPGA ML605 Evaluation Kit. Performances obtained with 16-QAM modulated test signal and material resource requirement are presented for a network of six hidden layer neurons.","PeriodicalId":271676,"journal":{"name":"2011 IEEE 9th International New Circuits and systems conference","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"FPGA-implementation of an adaptive neural network for RF power amplifier modeling\",\"authors\":\"M. Bahoura, Chan-Wang Park\",\"doi\":\"10.1109/NEWCAS.2011.5981211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an architecture for FPGA-implementation of neural adaptive neural network RF power behavioral modeling. The real-valued time-delay neural network (RVTDNN) and the backpropagation (BP) learning algorithm were implemented on FPGA using Xilinx System Generator for DSP and the Virtex-6 FPGA ML605 Evaluation Kit. Performances obtained with 16-QAM modulated test signal and material resource requirement are presented for a network of six hidden layer neurons.\",\"PeriodicalId\":271676,\"journal\":{\"name\":\"2011 IEEE 9th International New Circuits and systems conference\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 9th International New Circuits and systems conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2011.5981211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 9th International New Circuits and systems conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2011.5981211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文提出了一种fpga实现的神经自适应神经网络射频功率行为建模体系结构。采用基于Xilinx System Generator的DSP和Virtex-6 FPGA ML605评估套件,在FPGA上实现了实值时滞神经网络(RVTDNN)和反向传播(BP)学习算法。给出了一个包含6个隐层神经元的网络,在16-QAM调制测试信号和材料资源需求下所获得的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA-implementation of an adaptive neural network for RF power amplifier modeling
In this paper, we propose an architecture for FPGA-implementation of neural adaptive neural network RF power behavioral modeling. The real-valued time-delay neural network (RVTDNN) and the backpropagation (BP) learning algorithm were implemented on FPGA using Xilinx System Generator for DSP and the Virtex-6 FPGA ML605 Evaluation Kit. Performances obtained with 16-QAM modulated test signal and material resource requirement are presented for a network of six hidden layer neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信