多层电子结构的分析热模拟器。理论与数值实现

P. Bagnoli, C. Casarosa, F. Stefani
{"title":"多层电子结构的分析热模拟器。理论与数值实现","authors":"P. Bagnoli, C. Casarosa, F. Stefani","doi":"10.1109/THETA.2007.363413","DOIUrl":null,"url":null,"abstract":"This paper presents a steady-state thermal simulation strategy called DJOSER, which is dedicated primarily but not exclusively to packaging structures for electronic devices. It is applicable to structures that can be likened to a set of homogeneous layers stacked one on top of the other and possibly separated by thermal contact resistances, where the dissipated powers are due to two-dimensional heat sources distributed on the interfaces between the layers. A broad range of contour conditions and types of dissipated powers is included to make the models as close as possible to the typical structures of modern assembly technologies. Flow and temperature distributions are obtained via a system of integral equations that can be translated directly, with the usual squaring techniques, into a linear algebraic system","PeriodicalId":346940,"journal":{"name":"2007 International Conference on Thermal Issues in Emerging Technologies: Theory and Application","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"DJOSER: Analytical Thermal Simulator for Multilayer Electronic Structures. Theory and Numerical Implementation\",\"authors\":\"P. Bagnoli, C. Casarosa, F. Stefani\",\"doi\":\"10.1109/THETA.2007.363413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a steady-state thermal simulation strategy called DJOSER, which is dedicated primarily but not exclusively to packaging structures for electronic devices. It is applicable to structures that can be likened to a set of homogeneous layers stacked one on top of the other and possibly separated by thermal contact resistances, where the dissipated powers are due to two-dimensional heat sources distributed on the interfaces between the layers. A broad range of contour conditions and types of dissipated powers is included to make the models as close as possible to the typical structures of modern assembly technologies. Flow and temperature distributions are obtained via a system of integral equations that can be translated directly, with the usual squaring techniques, into a linear algebraic system\",\"PeriodicalId\":346940,\"journal\":{\"name\":\"2007 International Conference on Thermal Issues in Emerging Technologies: Theory and Application\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Thermal Issues in Emerging Technologies: Theory and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THETA.2007.363413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Thermal Issues in Emerging Technologies: Theory and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THETA.2007.363413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种称为DJOSER的稳态热模拟策略,该策略主要用于但不限于电子器件的封装结构。它适用于可以比作一组均匀层的结构,一层叠在另一层上,可能被热接触电阻分开,其中耗散的功率是由于分布在层之间界面上的二维热源。广泛的轮廓条件和类型的耗散功率被包括在内,使模型尽可能接近现代装配技术的典型结构。流动和温度分布是通过一组积分方程得到的,这些积分方程可以用通常的平方技术直接转换成线性代数系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DJOSER: Analytical Thermal Simulator for Multilayer Electronic Structures. Theory and Numerical Implementation
This paper presents a steady-state thermal simulation strategy called DJOSER, which is dedicated primarily but not exclusively to packaging structures for electronic devices. It is applicable to structures that can be likened to a set of homogeneous layers stacked one on top of the other and possibly separated by thermal contact resistances, where the dissipated powers are due to two-dimensional heat sources distributed on the interfaces between the layers. A broad range of contour conditions and types of dissipated powers is included to make the models as close as possible to the typical structures of modern assembly technologies. Flow and temperature distributions are obtained via a system of integral equations that can be translated directly, with the usual squaring techniques, into a linear algebraic system
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信