Ramon Santos Correa, Patricia Teixeira Sampaio, R. Braga, Victor Alberto Lambertucci, G. M. Almeida, A. Braga
{"title":"基于人工神经网络的无缝钢管力学性能预测","authors":"Ramon Santos Correa, Patricia Teixeira Sampaio, R. Braga, Victor Alberto Lambertucci, G. M. Almeida, A. Braga","doi":"10.1142/s1469026820500285","DOIUrl":null,"url":null,"abstract":"A bottleneck of laboratory analysis in process industries including steelmaking plants is the low sampling rate. Inference models using only variables measured online have then been used to made such information available in advance. This study develops predictive models for key mechanical properties of seamless steel tubes, by strength, ultimate tensile strength and hardness. A plant in Brazil was used as the case study. The sample sizes of some steel tube families given namely, yield a particular property are discrepant and sometimes very small. To overcome this sample imbalance and lack of representativeness, committees of predictive neural network models based on bagging predictors, a type of ensemble method, were adopted. As a result, all steel families for all properties have been satisfactorily described showing the correlations between targets and model estimates close to 99%. These results were compared to multiple linear regression, support vector machine and a simpler neural network. Such information available in advance favors corrective actions before complete tube production mitigating rework costs in general.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Mechanical Properties of Seamless Steel Tubes Using Artificial Neural Networks\",\"authors\":\"Ramon Santos Correa, Patricia Teixeira Sampaio, R. Braga, Victor Alberto Lambertucci, G. M. Almeida, A. Braga\",\"doi\":\"10.1142/s1469026820500285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bottleneck of laboratory analysis in process industries including steelmaking plants is the low sampling rate. Inference models using only variables measured online have then been used to made such information available in advance. This study develops predictive models for key mechanical properties of seamless steel tubes, by strength, ultimate tensile strength and hardness. A plant in Brazil was used as the case study. The sample sizes of some steel tube families given namely, yield a particular property are discrepant and sometimes very small. To overcome this sample imbalance and lack of representativeness, committees of predictive neural network models based on bagging predictors, a type of ensemble method, were adopted. As a result, all steel families for all properties have been satisfactorily described showing the correlations between targets and model estimates close to 99%. These results were compared to multiple linear regression, support vector machine and a simpler neural network. Such information available in advance favors corrective actions before complete tube production mitigating rework costs in general.\",\"PeriodicalId\":422521,\"journal\":{\"name\":\"Int. J. Comput. Intell. Appl.\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Intell. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1469026820500285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026820500285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of Mechanical Properties of Seamless Steel Tubes Using Artificial Neural Networks
A bottleneck of laboratory analysis in process industries including steelmaking plants is the low sampling rate. Inference models using only variables measured online have then been used to made such information available in advance. This study develops predictive models for key mechanical properties of seamless steel tubes, by strength, ultimate tensile strength and hardness. A plant in Brazil was used as the case study. The sample sizes of some steel tube families given namely, yield a particular property are discrepant and sometimes very small. To overcome this sample imbalance and lack of representativeness, committees of predictive neural network models based on bagging predictors, a type of ensemble method, were adopted. As a result, all steel families for all properties have been satisfactorily described showing the correlations between targets and model estimates close to 99%. These results were compared to multiple linear regression, support vector machine and a simpler neural network. Such information available in advance favors corrective actions before complete tube production mitigating rework costs in general.