通过MapReduce数据聚合实现上下文感知的项目推荐

W. Beer, Christian Derwein, S. Herramhof
{"title":"通过MapReduce数据聚合实现上下文感知的项目推荐","authors":"W. Beer, Christian Derwein, S. Herramhof","doi":"10.1145/2536853.2536859","DOIUrl":null,"url":null,"abstract":"As the amount of ubiquitous product and service information within our daily lives is exploding, client-centric and context-aware information filtering is one of the thriving topics within the next years. A popular approach is to combine context-awareness with traditional recommendation engines in order to evaluate the relevance of a large amount of items for a given situation and user. Within this work we propose a general software architecture as well as a prototypical implementation for a framework that combines traditional recommendation methods with a variable number of context dimensions, such as location of social context. This work shows how to use a MapReduce programming model for aggregating the necessary information for calculating fast context-aware recommendations. A use-case at the end of this work shows how to use this general framework to implement a client-centric, MapReduce-based recommendation engine for real-time recommending music events.","PeriodicalId":135195,"journal":{"name":"Advances in Mobile Multimedia","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Implementation of Context-Aware Item Recommendation through MapReduce Data Aggregation\",\"authors\":\"W. Beer, Christian Derwein, S. Herramhof\",\"doi\":\"10.1145/2536853.2536859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the amount of ubiquitous product and service information within our daily lives is exploding, client-centric and context-aware information filtering is one of the thriving topics within the next years. A popular approach is to combine context-awareness with traditional recommendation engines in order to evaluate the relevance of a large amount of items for a given situation and user. Within this work we propose a general software architecture as well as a prototypical implementation for a framework that combines traditional recommendation methods with a variable number of context dimensions, such as location of social context. This work shows how to use a MapReduce programming model for aggregating the necessary information for calculating fast context-aware recommendations. A use-case at the end of this work shows how to use this general framework to implement a client-centric, MapReduce-based recommendation engine for real-time recommending music events.\",\"PeriodicalId\":135195,\"journal\":{\"name\":\"Advances in Mobile Multimedia\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mobile Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2536853.2536859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mobile Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2536853.2536859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着我们日常生活中无处不在的产品和服务信息的数量呈爆炸式增长,以客户为中心和上下文感知的信息过滤将是未来几年蓬勃发展的主题之一。一种流行的方法是将上下文感知与传统的推荐引擎结合起来,以评估给定情况和用户的大量项目的相关性。在这项工作中,我们提出了一个通用的软件架构以及一个框架的原型实现,该框架将传统推荐方法与可变数量的上下文维度(如社会上下文的位置)相结合。这项工作展示了如何使用MapReduce编程模型来聚合必要的信息,以计算快速的上下文感知推荐。本文最后的一个用例展示了如何使用这个通用框架来实现一个以客户端为中心、基于mapreduce的实时推荐音乐事件的推荐引擎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of Context-Aware Item Recommendation through MapReduce Data Aggregation
As the amount of ubiquitous product and service information within our daily lives is exploding, client-centric and context-aware information filtering is one of the thriving topics within the next years. A popular approach is to combine context-awareness with traditional recommendation engines in order to evaluate the relevance of a large amount of items for a given situation and user. Within this work we propose a general software architecture as well as a prototypical implementation for a framework that combines traditional recommendation methods with a variable number of context dimensions, such as location of social context. This work shows how to use a MapReduce programming model for aggregating the necessary information for calculating fast context-aware recommendations. A use-case at the end of this work shows how to use this general framework to implement a client-centric, MapReduce-based recommendation engine for real-time recommending music events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信