{"title":"通过MapReduce数据聚合实现上下文感知的项目推荐","authors":"W. Beer, Christian Derwein, S. Herramhof","doi":"10.1145/2536853.2536859","DOIUrl":null,"url":null,"abstract":"As the amount of ubiquitous product and service information within our daily lives is exploding, client-centric and context-aware information filtering is one of the thriving topics within the next years. A popular approach is to combine context-awareness with traditional recommendation engines in order to evaluate the relevance of a large amount of items for a given situation and user. Within this work we propose a general software architecture as well as a prototypical implementation for a framework that combines traditional recommendation methods with a variable number of context dimensions, such as location of social context. This work shows how to use a MapReduce programming model for aggregating the necessary information for calculating fast context-aware recommendations. A use-case at the end of this work shows how to use this general framework to implement a client-centric, MapReduce-based recommendation engine for real-time recommending music events.","PeriodicalId":135195,"journal":{"name":"Advances in Mobile Multimedia","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Implementation of Context-Aware Item Recommendation through MapReduce Data Aggregation\",\"authors\":\"W. Beer, Christian Derwein, S. Herramhof\",\"doi\":\"10.1145/2536853.2536859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the amount of ubiquitous product and service information within our daily lives is exploding, client-centric and context-aware information filtering is one of the thriving topics within the next years. A popular approach is to combine context-awareness with traditional recommendation engines in order to evaluate the relevance of a large amount of items for a given situation and user. Within this work we propose a general software architecture as well as a prototypical implementation for a framework that combines traditional recommendation methods with a variable number of context dimensions, such as location of social context. This work shows how to use a MapReduce programming model for aggregating the necessary information for calculating fast context-aware recommendations. A use-case at the end of this work shows how to use this general framework to implement a client-centric, MapReduce-based recommendation engine for real-time recommending music events.\",\"PeriodicalId\":135195,\"journal\":{\"name\":\"Advances in Mobile Multimedia\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mobile Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2536853.2536859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mobile Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2536853.2536859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of Context-Aware Item Recommendation through MapReduce Data Aggregation
As the amount of ubiquitous product and service information within our daily lives is exploding, client-centric and context-aware information filtering is one of the thriving topics within the next years. A popular approach is to combine context-awareness with traditional recommendation engines in order to evaluate the relevance of a large amount of items for a given situation and user. Within this work we propose a general software architecture as well as a prototypical implementation for a framework that combines traditional recommendation methods with a variable number of context dimensions, such as location of social context. This work shows how to use a MapReduce programming model for aggregating the necessary information for calculating fast context-aware recommendations. A use-case at the end of this work shows how to use this general framework to implement a client-centric, MapReduce-based recommendation engine for real-time recommending music events.