二维黎曼积分的一种变体

A. J. Goldman
{"title":"二维黎曼积分的一种变体","authors":"A. J. Goldman","doi":"10.6028/JRES.069B.023","DOIUrl":null,"url":null,"abstract":"For a va riant of the two-d imensional Ri e mann int egra l suggested by S. Marcus , it is shown that the only integrab le fun c tions which are continuous (o r merely continuou s se parately in one of th e variables) are the cons ta nt fun ctions . The int egrab le di scontinuou s functions a re proven to be cons ta nt except poss ib ly on a se t which is \"s ma ll\" in a sense made precise in the paper.","PeriodicalId":408709,"journal":{"name":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1965-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A variant of the two-dimensional Riemann integral\",\"authors\":\"A. J. Goldman\",\"doi\":\"10.6028/JRES.069B.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a va riant of the two-d imensional Ri e mann int egra l suggested by S. Marcus , it is shown that the only integrab le fun c tions which are continuous (o r merely continuou s se parately in one of th e variables) are the cons ta nt fun ctions . The int egrab le di scontinuou s functions a re proven to be cons ta nt except poss ib ly on a se t which is \\\"s ma ll\\\" in a sense made precise in the paper.\",\"PeriodicalId\":408709,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1965-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.069B.023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.069B.023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于s . Marcus提出的二维积分函数的一种变体,证明了连续的可积函数(或仅仅连续的函数部分地存在于其中一个变量中)是唯一连续的可积函数。我们证明了连续函数的积分函数是一种共轭函数,它除了具有一个在本文中精确定义的意义上的“最小值”之外,没有其他的共轭函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A variant of the two-dimensional Riemann integral
For a va riant of the two-d imensional Ri e mann int egra l suggested by S. Marcus , it is shown that the only integrab le fun c tions which are continuous (o r merely continuou s se parately in one of th e variables) are the cons ta nt fun ctions . The int egrab le di scontinuou s functions a re proven to be cons ta nt except poss ib ly on a se t which is "s ma ll" in a sense made precise in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信