客户端深度Web数据提取

M. Álvarez, A. Pan, J. Raposo, Á. Viña
{"title":"客户端深度Web数据提取","authors":"M. Álvarez, A. Pan, J. Raposo, Á. Viña","doi":"10.1109/CEC-EAST.2004.30","DOIUrl":null,"url":null,"abstract":"The problem of data extraction from the deep Web can be divided into two tasks: crawling the client-side and the server-side deep Web. The objective is to define an architecture and a set of related techniques to access the information placed in the client-side deep Web. This involves dealing with aspects such as JavaScript technology, nonstandard session maintenance mechanisms, client redirections, pop-up menus, etc. We use current browser APIs as building blocks and leverage them to implement novel crawling models and algorithms","PeriodicalId":433885,"journal":{"name":"IEEE International Conference on E-Commerce Technology for Dynamic E-Business","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Client-side deep Web data extraction\",\"authors\":\"M. Álvarez, A. Pan, J. Raposo, Á. Viña\",\"doi\":\"10.1109/CEC-EAST.2004.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of data extraction from the deep Web can be divided into two tasks: crawling the client-side and the server-side deep Web. The objective is to define an architecture and a set of related techniques to access the information placed in the client-side deep Web. This involves dealing with aspects such as JavaScript technology, nonstandard session maintenance mechanisms, client redirections, pop-up menus, etc. We use current browser APIs as building blocks and leverage them to implement novel crawling models and algorithms\",\"PeriodicalId\":433885,\"journal\":{\"name\":\"IEEE International Conference on E-Commerce Technology for Dynamic E-Business\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on E-Commerce Technology for Dynamic E-Business\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC-EAST.2004.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on E-Commerce Technology for Dynamic E-Business","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC-EAST.2004.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

从深度网络中提取数据的问题可以分为两个任务:爬取客户端和服务器端深度网络。我们的目标是定义一个体系结构和一组相关的技术来访问客户端深度Web中的信息。这涉及到处理诸如JavaScript技术、非标准会话维护机制、客户端重定向、弹出菜单等方面。我们使用当前的浏览器api作为构建块,并利用它们来实现新的爬行模型和算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Client-side deep Web data extraction
The problem of data extraction from the deep Web can be divided into two tasks: crawling the client-side and the server-side deep Web. The objective is to define an architecture and a set of related techniques to access the information placed in the client-side deep Web. This involves dealing with aspects such as JavaScript technology, nonstandard session maintenance mechanisms, client redirections, pop-up menus, etc. We use current browser APIs as building blocks and leverage them to implement novel crawling models and algorithms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信