利用驾驶员面部特征预测驾驶员变道动作

Abdellatif Moussaid, Ismail Berrada, Mohamed El-Kamili, Khalid Fardousse
{"title":"利用驾驶员面部特征预测驾驶员变道动作","authors":"Abdellatif Moussaid, Ismail Berrada, Mohamed El-Kamili, Khalid Fardousse","doi":"10.1109/wincom47513.2019.8942531","DOIUrl":null,"url":null,"abstract":"In this paper, we will present our project concerning realizing a system of predicting maneuvers before the vehicle turns through using a dataset containing videos of drivers in different situations and different maneuvers, as well as information on the environment, such as speed, empty lines and the existence of an artifact. After preparing the dataset, we built our CNN-LSTM model based on convolutional and recurrent layers. Our CNN-LSTM model allowed us to predict the maneuver with an accuracy of 94.1% and 3.75 seconds before the turn. Finally, For our model to be robust, we tried to detect anomalies and replace them with more meaningful values. We also tested our model by adding noise to the images.","PeriodicalId":222207,"journal":{"name":"2019 International Conference on Wireless Networks and Mobile Communications (WINCOM)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting Driver Lane Change Maneuvers Using Driver's Face\",\"authors\":\"Abdellatif Moussaid, Ismail Berrada, Mohamed El-Kamili, Khalid Fardousse\",\"doi\":\"10.1109/wincom47513.2019.8942531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will present our project concerning realizing a system of predicting maneuvers before the vehicle turns through using a dataset containing videos of drivers in different situations and different maneuvers, as well as information on the environment, such as speed, empty lines and the existence of an artifact. After preparing the dataset, we built our CNN-LSTM model based on convolutional and recurrent layers. Our CNN-LSTM model allowed us to predict the maneuver with an accuracy of 94.1% and 3.75 seconds before the turn. Finally, For our model to be robust, we tried to detect anomalies and replace them with more meaningful values. We also tested our model by adding noise to the images.\",\"PeriodicalId\":222207,\"journal\":{\"name\":\"2019 International Conference on Wireless Networks and Mobile Communications (WINCOM)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Wireless Networks and Mobile Communications (WINCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/wincom47513.2019.8942531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Wireless Networks and Mobile Communications (WINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wincom47513.2019.8942531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们将介绍我们的项目,通过使用包含不同情况和不同动作的驾驶员视频的数据集,以及关于环境的信息,如速度,空线和人工制品的存在,实现车辆转弯前预测机动的系统。在准备好数据集之后,我们建立了基于卷积层和循环层的CNN-LSTM模型。我们的CNN-LSTM模型使我们能够在转弯前3.75秒以94.1%的精度预测机动。最后,为了使我们的模型具有鲁棒性,我们尝试检测异常并将其替换为更有意义的值。我们还通过在图像中添加噪声来测试我们的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Driver Lane Change Maneuvers Using Driver's Face
In this paper, we will present our project concerning realizing a system of predicting maneuvers before the vehicle turns through using a dataset containing videos of drivers in different situations and different maneuvers, as well as information on the environment, such as speed, empty lines and the existence of an artifact. After preparing the dataset, we built our CNN-LSTM model based on convolutional and recurrent layers. Our CNN-LSTM model allowed us to predict the maneuver with an accuracy of 94.1% and 3.75 seconds before the turn. Finally, For our model to be robust, we tried to detect anomalies and replace them with more meaningful values. We also tested our model by adding noise to the images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信