在电池集成充电工况下,表面贴装永磁同步电机的电磁转矩和有效绕组电感分析

C. Lai, N. Kar
{"title":"在电池集成充电工况下,表面贴装永磁同步电机的电磁转矩和有效绕组电感分析","authors":"C. Lai, N. Kar","doi":"10.1109/INTMAG.2015.7157412","DOIUrl":null,"url":null,"abstract":"The concept of integrated battery charger is attracting attentions these days. To design a motor drive system with an integrated charging capability, the machine windings are usually reconfigured to be used as the AC side inductors. Along with the switches from the drive circuitry, the AC side inductors form the voltage front-end to improve the power factor while charging. Most of the research work that was conducted was focused on the circuit topologies [1], [2] and the charger performances [3]. When looking into the basis, what will happen inside the machine when AC current is flowing through the machine windings? More specifically, the interactions between the electromagnetic field produced by the AC current excitation and the rotor magnetic field can cause electromagnetic torque and variations of the effective winding inductance. In this investigation, these two aspects, the produced torque and the impedance due to different winding configurations under a single-phase integrated charging operation employing a surface-mounted permanent magnet synchronous machine (SPMSM) drive system are analyzed. Experimental tests were conducted on a 21 HP, 8-pole SPMSM to verify the results.","PeriodicalId":381832,"journal":{"name":"2015 IEEE Magnetics Conference (INTERMAG)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the electromagnetic torque and the effective winding inductance of a surface-mounted PMSM under integrated battery charging operation\",\"authors\":\"C. Lai, N. Kar\",\"doi\":\"10.1109/INTMAG.2015.7157412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of integrated battery charger is attracting attentions these days. To design a motor drive system with an integrated charging capability, the machine windings are usually reconfigured to be used as the AC side inductors. Along with the switches from the drive circuitry, the AC side inductors form the voltage front-end to improve the power factor while charging. Most of the research work that was conducted was focused on the circuit topologies [1], [2] and the charger performances [3]. When looking into the basis, what will happen inside the machine when AC current is flowing through the machine windings? More specifically, the interactions between the electromagnetic field produced by the AC current excitation and the rotor magnetic field can cause electromagnetic torque and variations of the effective winding inductance. In this investigation, these two aspects, the produced torque and the impedance due to different winding configurations under a single-phase integrated charging operation employing a surface-mounted permanent magnet synchronous machine (SPMSM) drive system are analyzed. Experimental tests were conducted on a 21 HP, 8-pole SPMSM to verify the results.\",\"PeriodicalId\":381832,\"journal\":{\"name\":\"2015 IEEE Magnetics Conference (INTERMAG)\",\"volume\":\"156 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Magnetics Conference (INTERMAG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTMAG.2015.7157412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Magnetics Conference (INTERMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTMAG.2015.7157412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,集成电池充电器的概念备受关注。为了设计具有集成充电能力的电机驱动系统,通常将机器绕组重新配置为用作交流侧电感器。与驱动电路的开关一起,交流侧电感形成电压前端,以提高充电时的功率因数。大部分研究工作集中在电路拓扑[1],[2]和充电器性能[3]上。当查看基极时,当交流电流过机器绕组时,机器内部会发生什么?具体地说,交流励磁产生的电磁场与转子磁场之间的相互作用会引起电磁转矩和有效绕组电感的变化。本文分析了采用表面贴装式永磁同步电机(SPMSM)驱动系统进行单相综合充电时,不同绕组配置所产生的转矩和阻抗。在一台21马力的8极SPMSM上进行了实验测试以验证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the electromagnetic torque and the effective winding inductance of a surface-mounted PMSM under integrated battery charging operation
The concept of integrated battery charger is attracting attentions these days. To design a motor drive system with an integrated charging capability, the machine windings are usually reconfigured to be used as the AC side inductors. Along with the switches from the drive circuitry, the AC side inductors form the voltage front-end to improve the power factor while charging. Most of the research work that was conducted was focused on the circuit topologies [1], [2] and the charger performances [3]. When looking into the basis, what will happen inside the machine when AC current is flowing through the machine windings? More specifically, the interactions between the electromagnetic field produced by the AC current excitation and the rotor magnetic field can cause electromagnetic torque and variations of the effective winding inductance. In this investigation, these two aspects, the produced torque and the impedance due to different winding configurations under a single-phase integrated charging operation employing a surface-mounted permanent magnet synchronous machine (SPMSM) drive system are analyzed. Experimental tests were conducted on a 21 HP, 8-pole SPMSM to verify the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信