{"title":"文字篡改笔迹鉴定的法医学性能研究","authors":"Priyanka Roy, Soumen Bag","doi":"10.1109/ISBA.2019.8778490","DOIUrl":null,"url":null,"abstract":"Forgery activity in legal handwritten documents is an identifiable problem. Falsification of document due to minute alteration of existings not only causes immense financial loss to a person or to any organization but also lessens the economic growth of a country. Here, we introduce and present a solution to detect forgery in handwritten documents by analyzing perceptually similar ink of different pens. The research is all about forensic investigation of handwritten word alteration which is performed by adding extra letter in a way such that the whole meaning of the word changes. The problem is formulated as binary classification problem. If words of the corresponding document are written by same pen, these are classified as positive class and words of a document accompanied with little inclusion of letters as a forgery attack, are classified as negative class. The article proposes Multilayer Perceptron classifier which has been adopted to classify data instances that have been computed by extracting Y CbCr color-based statistical features. This proposal has been tested on data set which has been generated by 10 blue and 10 black ball point pens. The respective obtained average accuracy is 83.71% and 78. 18% for blue pen data and black pen data.","PeriodicalId":270033,"journal":{"name":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Forensic Performance on Handwriting to Identify Forgery Owing to Word Alteration\",\"authors\":\"Priyanka Roy, Soumen Bag\",\"doi\":\"10.1109/ISBA.2019.8778490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forgery activity in legal handwritten documents is an identifiable problem. Falsification of document due to minute alteration of existings not only causes immense financial loss to a person or to any organization but also lessens the economic growth of a country. Here, we introduce and present a solution to detect forgery in handwritten documents by analyzing perceptually similar ink of different pens. The research is all about forensic investigation of handwritten word alteration which is performed by adding extra letter in a way such that the whole meaning of the word changes. The problem is formulated as binary classification problem. If words of the corresponding document are written by same pen, these are classified as positive class and words of a document accompanied with little inclusion of letters as a forgery attack, are classified as negative class. The article proposes Multilayer Perceptron classifier which has been adopted to classify data instances that have been computed by extracting Y CbCr color-based statistical features. This proposal has been tested on data set which has been generated by 10 blue and 10 black ball point pens. The respective obtained average accuracy is 83.71% and 78. 18% for blue pen data and black pen data.\",\"PeriodicalId\":270033,\"journal\":{\"name\":\"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBA.2019.8778490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2019.8778490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forensic Performance on Handwriting to Identify Forgery Owing to Word Alteration
Forgery activity in legal handwritten documents is an identifiable problem. Falsification of document due to minute alteration of existings not only causes immense financial loss to a person or to any organization but also lessens the economic growth of a country. Here, we introduce and present a solution to detect forgery in handwritten documents by analyzing perceptually similar ink of different pens. The research is all about forensic investigation of handwritten word alteration which is performed by adding extra letter in a way such that the whole meaning of the word changes. The problem is formulated as binary classification problem. If words of the corresponding document are written by same pen, these are classified as positive class and words of a document accompanied with little inclusion of letters as a forgery attack, are classified as negative class. The article proposes Multilayer Perceptron classifier which has been adopted to classify data instances that have been computed by extracting Y CbCr color-based statistical features. This proposal has been tested on data set which has been generated by 10 blue and 10 black ball point pens. The respective obtained average accuracy is 83.71% and 78. 18% for blue pen data and black pen data.