基于图像的小型无人机目标定位的最大似然估计方法

Ruofei He, Hongjuan Liu, Dajian Li, Huixia Liu
{"title":"基于图像的小型无人机目标定位的最大似然估计方法","authors":"Ruofei He, Hongjuan Liu, Dajian Li, Huixia Liu","doi":"10.1109/CGNCC.2016.7828956","DOIUrl":null,"url":null,"abstract":"To improve the accuracy and the robustness of the image based target localization for the small unmanned aerial vehicle (UAV), a maximum likelihood estimation (MLE) approach is proposed. A Monte Carlo method is used for estimating the error information of the tradition localization method. After retrieving the distribution parameters from the Monte Carlo simulations, the maximum likelihood estimation is then applied to acquire the final estimation result based on two traditional localization measurement results. Flying tests show that the MLE method could achieve a better result than the traditional method and a significant improvement on the robustness.","PeriodicalId":426650,"journal":{"name":"2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A maximum likelihood estimation approach for image based target localization via small unmanned aerial vehicle\",\"authors\":\"Ruofei He, Hongjuan Liu, Dajian Li, Huixia Liu\",\"doi\":\"10.1109/CGNCC.2016.7828956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the accuracy and the robustness of the image based target localization for the small unmanned aerial vehicle (UAV), a maximum likelihood estimation (MLE) approach is proposed. A Monte Carlo method is used for estimating the error information of the tradition localization method. After retrieving the distribution parameters from the Monte Carlo simulations, the maximum likelihood estimation is then applied to acquire the final estimation result based on two traditional localization measurement results. Flying tests show that the MLE method could achieve a better result than the traditional method and a significant improvement on the robustness.\",\"PeriodicalId\":426650,\"journal\":{\"name\":\"2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGNCC.2016.7828956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGNCC.2016.7828956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高小型无人机图像目标定位的精度和鲁棒性,提出了一种极大似然估计方法。采用蒙特卡罗方法对传统定位方法的误差信息进行估计。在蒙特卡罗模拟中获取分布参数后,利用极大似然估计,在两种传统定位测量结果的基础上得到最终估计结果。飞行试验表明,该方法比传统方法取得了更好的结果,鲁棒性得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A maximum likelihood estimation approach for image based target localization via small unmanned aerial vehicle
To improve the accuracy and the robustness of the image based target localization for the small unmanned aerial vehicle (UAV), a maximum likelihood estimation (MLE) approach is proposed. A Monte Carlo method is used for estimating the error information of the tradition localization method. After retrieving the distribution parameters from the Monte Carlo simulations, the maximum likelihood estimation is then applied to acquire the final estimation result based on two traditional localization measurement results. Flying tests show that the MLE method could achieve a better result than the traditional method and a significant improvement on the robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信