核壳Copt磁性纳米颗粒在pemfc阴极电极上的ORR增强

Jihyun Kim, W. Yang, Yongchan Kim
{"title":"核壳Copt磁性纳米颗粒在pemfc阴极电极上的ORR增强","authors":"Jihyun Kim, W. Yang, Yongchan Kim","doi":"10.11159/htff22.149","DOIUrl":null,"url":null,"abstract":"Polymer electrolyte membrane fuel cells (PEMFCs) have attracted great attention as a power source for automotive industry owing to their eco-friendly characteristics and high energy efficiency. The most important issues for the commercialization of PEMFCs are the high cost of Pt which is used as catalysts in PEMFCs and the slow oxygen reduction reaction (ORR) speed in a cathode catalyst layer. Platinum group metals (PGMs) contribute to 21–45% of the total cost in a PEMFC stack [1]. Pt-M alloys have been studied to solve the issues by reducing Pt loading and enhancing PEMFC performance. Especially, among the alloys, a core-shell CoPt has very high surface reactivity which increases reaction speed [2]. Meanwhile, the application of a magnetic field to ORR catalysts has been investigated to increase ORR speed. Enhancement of catalyst reactivity in a magnetic field was due to paramagnetic oxygen which is attracted to magnetic poles. Catalyst reactivity was enhanced in a magnetic field regardless of the pole direction. Okada et al. [3] reported that a PEMFC with magnetized Nd-Fe-B microparticles in a catalyst layer showed better performance than that with not magnetized Nd-Fe-B microparticles. Therefore, magnetized core-shell CoPt nanoparticles have a great potential for the performance improvement of PEMFCs, but related research is very limited. In this study, the effect of magnetization on the","PeriodicalId":385356,"journal":{"name":"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ORR Enhancement Using Core-Shell Copt Magnetic Nanoparticles In Cathode Electrode Of Pemfcs\",\"authors\":\"Jihyun Kim, W. Yang, Yongchan Kim\",\"doi\":\"10.11159/htff22.149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymer electrolyte membrane fuel cells (PEMFCs) have attracted great attention as a power source for automotive industry owing to their eco-friendly characteristics and high energy efficiency. The most important issues for the commercialization of PEMFCs are the high cost of Pt which is used as catalysts in PEMFCs and the slow oxygen reduction reaction (ORR) speed in a cathode catalyst layer. Platinum group metals (PGMs) contribute to 21–45% of the total cost in a PEMFC stack [1]. Pt-M alloys have been studied to solve the issues by reducing Pt loading and enhancing PEMFC performance. Especially, among the alloys, a core-shell CoPt has very high surface reactivity which increases reaction speed [2]. Meanwhile, the application of a magnetic field to ORR catalysts has been investigated to increase ORR speed. Enhancement of catalyst reactivity in a magnetic field was due to paramagnetic oxygen which is attracted to magnetic poles. Catalyst reactivity was enhanced in a magnetic field regardless of the pole direction. Okada et al. [3] reported that a PEMFC with magnetized Nd-Fe-B microparticles in a catalyst layer showed better performance than that with not magnetized Nd-Fe-B microparticles. Therefore, magnetized core-shell CoPt nanoparticles have a great potential for the performance improvement of PEMFCs, but related research is very limited. In this study, the effect of magnetization on the\",\"PeriodicalId\":385356,\"journal\":{\"name\":\"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11159/htff22.149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/htff22.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚合物电解质膜燃料电池(PEMFCs)作为一种环保、高能效的汽车动力源受到了广泛的关注。影响PEMFCs商业化的最重要的问题是用作PEMFCs催化剂的Pt的高成本和阴极催化剂层中氧还原反应(ORR)速度慢。铂族金属(PGMs)占PEMFC堆叠总成本的21-45%。Pt- m合金的研究旨在通过降低Pt负载和提高PEMFC性能来解决这些问题。其中,核壳型CoPt具有很高的表面反应活性,提高了反应速度。同时,研究了在ORR催化剂上施加磁场以提高ORR速度的方法。催化剂在磁场中的反应性增强是由于顺磁性氧被磁极吸引。在磁场作用下,催化剂的反应活性增强,而与磁极方向无关。Okada et al.[3]报道在催化剂层中磁化Nd-Fe-B微粒的PEMFC比未磁化Nd-Fe-B微粒的PEMFC表现出更好的性能。因此,磁化的核壳CoPt纳米颗粒在提高PEMFCs性能方面具有很大的潜力,但相关的研究非常有限。在本研究中,研究了磁化强度对材料的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ORR Enhancement Using Core-Shell Copt Magnetic Nanoparticles In Cathode Electrode Of Pemfcs
Polymer electrolyte membrane fuel cells (PEMFCs) have attracted great attention as a power source for automotive industry owing to their eco-friendly characteristics and high energy efficiency. The most important issues for the commercialization of PEMFCs are the high cost of Pt which is used as catalysts in PEMFCs and the slow oxygen reduction reaction (ORR) speed in a cathode catalyst layer. Platinum group metals (PGMs) contribute to 21–45% of the total cost in a PEMFC stack [1]. Pt-M alloys have been studied to solve the issues by reducing Pt loading and enhancing PEMFC performance. Especially, among the alloys, a core-shell CoPt has very high surface reactivity which increases reaction speed [2]. Meanwhile, the application of a magnetic field to ORR catalysts has been investigated to increase ORR speed. Enhancement of catalyst reactivity in a magnetic field was due to paramagnetic oxygen which is attracted to magnetic poles. Catalyst reactivity was enhanced in a magnetic field regardless of the pole direction. Okada et al. [3] reported that a PEMFC with magnetized Nd-Fe-B microparticles in a catalyst layer showed better performance than that with not magnetized Nd-Fe-B microparticles. Therefore, magnetized core-shell CoPt nanoparticles have a great potential for the performance improvement of PEMFCs, but related research is very limited. In this study, the effect of magnetization on the
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信