多人到达-避免游戏的路径防御方法

Mo Chen, Zhengyuan Zhou, C. Tomlin
{"title":"多人到达-避免游戏的路径防御方法","authors":"Mo Chen, Zhengyuan Zhou, C. Tomlin","doi":"10.1109/CDC.2014.7039758","DOIUrl":null,"url":null,"abstract":"We consider a multiplayer reach-avoid game played between N attackers and N defenders moving with simple dynamics on a general two-dimensional domain. The attackers attempt to win the game by sending at least M of them (1 ≤ M ≤ N) to a target location while the defenders try to prevent the attackers from doing so by capturing them. The analysis of this game plays an important role in collision avoidance, motion planning, and aircraft control, among other applications involving cooperative agents. The high dimensionality of the game makes computing an optimal solution for either side intractable when N > 1. The solution is difficult even when N = 1. To address this issue, we present an efficient, approximate solution to the 1 vs. 1 problem. We call the approximate solution the “path defense solution”, which is conservative towards the defenders. This serves as a building block for an approximate solution of the multiplayer game. Compared to the classical Hamilton-Jacobi-Isaacs approach for solving the 1 vs. 1 game, our new method is orders of magnitude faster, and scales much better with the number of players.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"A path defense approach to the multiplayer reach-avoid game\",\"authors\":\"Mo Chen, Zhengyuan Zhou, C. Tomlin\",\"doi\":\"10.1109/CDC.2014.7039758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a multiplayer reach-avoid game played between N attackers and N defenders moving with simple dynamics on a general two-dimensional domain. The attackers attempt to win the game by sending at least M of them (1 ≤ M ≤ N) to a target location while the defenders try to prevent the attackers from doing so by capturing them. The analysis of this game plays an important role in collision avoidance, motion planning, and aircraft control, among other applications involving cooperative agents. The high dimensionality of the game makes computing an optimal solution for either side intractable when N > 1. The solution is difficult even when N = 1. To address this issue, we present an efficient, approximate solution to the 1 vs. 1 problem. We call the approximate solution the “path defense solution”, which is conservative towards the defenders. This serves as a building block for an approximate solution of the multiplayer game. Compared to the classical Hamilton-Jacobi-Isaacs approach for solving the 1 vs. 1 game, our new method is orders of magnitude faster, and scales much better with the number of players.\",\"PeriodicalId\":202708,\"journal\":{\"name\":\"53rd IEEE Conference on Decision and Control\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"53rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2014.7039758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7039758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

我们考虑一个多人游戏,在一个普通的二维域上,N个攻击者和N个防御者之间进行简单的动态移动。攻击者试图通过发送至少M个(1≤M≤N)到目标位置来赢得游戏,而防御者试图通过捕获它们来阻止攻击者这样做。该博弈的分析在碰撞避免、运动规划和飞机控制等涉及合作agent的应用中起着重要的作用。当N > 1时,游戏的高维性使得计算任意一边的最优解变得棘手。即使N = 1,解也很困难。为了解决这个问题,我们提出了1 vs. 1问题的一个有效的近似解决方案。我们将近似解称为“路径防御解”,它对防御者是保守的。这可以作为多人游戏近似解决方案的构建块。与解决1对1博弈的经典Hamilton-Jacobi-Isaacs方法相比,我们的新方法速度快了几个数量级,并且随着玩家数量的增加而扩展得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A path defense approach to the multiplayer reach-avoid game
We consider a multiplayer reach-avoid game played between N attackers and N defenders moving with simple dynamics on a general two-dimensional domain. The attackers attempt to win the game by sending at least M of them (1 ≤ M ≤ N) to a target location while the defenders try to prevent the attackers from doing so by capturing them. The analysis of this game plays an important role in collision avoidance, motion planning, and aircraft control, among other applications involving cooperative agents. The high dimensionality of the game makes computing an optimal solution for either side intractable when N > 1. The solution is difficult even when N = 1. To address this issue, we present an efficient, approximate solution to the 1 vs. 1 problem. We call the approximate solution the “path defense solution”, which is conservative towards the defenders. This serves as a building block for an approximate solution of the multiplayer game. Compared to the classical Hamilton-Jacobi-Isaacs approach for solving the 1 vs. 1 game, our new method is orders of magnitude faster, and scales much better with the number of players.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信