划分fpga优化收缩阵列的乐趣和利润

Long Chung Chan, G. Malik, Nachiket Kapre
{"title":"划分fpga优化收缩阵列的乐趣和利润","authors":"Long Chung Chan, G. Malik, Nachiket Kapre","doi":"10.1109/ICFPT47387.2019.00025","DOIUrl":null,"url":null,"abstract":"We can improve the inference throughput of deep convolutional networks mapped to FPGA-optimized systolic arrays, at the expense of latency, with array partitioning and layer pipelining. Modern convolutional networks have a growing number of layers, such as the 58 separable layer GoogleNetv1, with varying compute, storage, and data movement requirements. At the same time, modern high-end FPGAs, such as the Xilinx UltraScale+ VU37P, can accommodate high-performance, 650 MHz, layouts of large 1920x9 systolic arrays. These can stay underutilized if the network layer requirements do not match the array size. We formulate an optimization problem, for improving array utilization, and boosting inference throughput, that determines how to partition the systolic array on the FPGA chip, and how to slice the network layers across the array partitions in a pipelined fashion. We adopt a two phase approach where (1) we identify layer assignment for each partition using an Evolutionary Strategy, and (2) we adopt a greedy-but-optimal approach for resource allocation to select the systolic array dimensions of each partition. When compared to state-of-the-art systolic architectures, we show throughput improvements in the range 1.3-1.5x and latency improvements in the range 0.5-1.8x against Multi-CLP and Xilinx SuperTile.","PeriodicalId":241340,"journal":{"name":"2019 International Conference on Field-Programmable Technology (ICFPT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Partitioning FPGA-Optimized Systolic Arrays for Fun and Profit\",\"authors\":\"Long Chung Chan, G. Malik, Nachiket Kapre\",\"doi\":\"10.1109/ICFPT47387.2019.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We can improve the inference throughput of deep convolutional networks mapped to FPGA-optimized systolic arrays, at the expense of latency, with array partitioning and layer pipelining. Modern convolutional networks have a growing number of layers, such as the 58 separable layer GoogleNetv1, with varying compute, storage, and data movement requirements. At the same time, modern high-end FPGAs, such as the Xilinx UltraScale+ VU37P, can accommodate high-performance, 650 MHz, layouts of large 1920x9 systolic arrays. These can stay underutilized if the network layer requirements do not match the array size. We formulate an optimization problem, for improving array utilization, and boosting inference throughput, that determines how to partition the systolic array on the FPGA chip, and how to slice the network layers across the array partitions in a pipelined fashion. We adopt a two phase approach where (1) we identify layer assignment for each partition using an Evolutionary Strategy, and (2) we adopt a greedy-but-optimal approach for resource allocation to select the systolic array dimensions of each partition. When compared to state-of-the-art systolic architectures, we show throughput improvements in the range 1.3-1.5x and latency improvements in the range 0.5-1.8x against Multi-CLP and Xilinx SuperTile.\",\"PeriodicalId\":241340,\"journal\":{\"name\":\"2019 International Conference on Field-Programmable Technology (ICFPT)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Field-Programmable Technology (ICFPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFPT47387.2019.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT47387.2019.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们可以提高映射到fpga优化收缩阵列的深度卷积网络的推理吞吐量,以牺牲延迟为代价,通过阵列分区和层流水线。现代卷积网络有越来越多的层,例如58个可分离层GoogleNetv1,具有不同的计算、存储和数据移动需求。同时,现代高端fpga,如赛灵思UltraScale+ VU37P,可以容纳高性能,650 MHz,大型1920x9收缩阵列的布局。如果网络层需求与数组大小不匹配,这些资源可能得不到充分利用。为了提高阵列利用率和提高推理吞吐量,我们制定了一个优化问题,该问题决定了如何在FPGA芯片上划分收缩阵列,以及如何以流水线方式跨阵列分区对网络层进行切片。我们采用两阶段方法,其中(1)我们使用进化策略确定每个分区的层分配,(2)我们采用贪婪但最优的资源分配方法来选择每个分区的收缩数组维度。与最先进的收缩架构相比,我们显示,与Multi-CLP和Xilinx SuperTile相比,吞吐量提高了1.3-1.5倍,延迟提高了0.5-1.8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partitioning FPGA-Optimized Systolic Arrays for Fun and Profit
We can improve the inference throughput of deep convolutional networks mapped to FPGA-optimized systolic arrays, at the expense of latency, with array partitioning and layer pipelining. Modern convolutional networks have a growing number of layers, such as the 58 separable layer GoogleNetv1, with varying compute, storage, and data movement requirements. At the same time, modern high-end FPGAs, such as the Xilinx UltraScale+ VU37P, can accommodate high-performance, 650 MHz, layouts of large 1920x9 systolic arrays. These can stay underutilized if the network layer requirements do not match the array size. We formulate an optimization problem, for improving array utilization, and boosting inference throughput, that determines how to partition the systolic array on the FPGA chip, and how to slice the network layers across the array partitions in a pipelined fashion. We adopt a two phase approach where (1) we identify layer assignment for each partition using an Evolutionary Strategy, and (2) we adopt a greedy-but-optimal approach for resource allocation to select the systolic array dimensions of each partition. When compared to state-of-the-art systolic architectures, we show throughput improvements in the range 1.3-1.5x and latency improvements in the range 0.5-1.8x against Multi-CLP and Xilinx SuperTile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信