多体分子动力学中动态n元组计算的加速

Patrick E. Small, Kuang Liu, S. Tiwari, R. Kalia, A. Nakano, K. Nomura, P. Vashishta
{"title":"多体分子动力学中动态n元组计算的加速","authors":"Patrick E. Small, Kuang Liu, S. Tiwari, R. Kalia, A. Nakano, K. Nomura, P. Vashishta","doi":"10.1145/3149457.3149463","DOIUrl":null,"url":null,"abstract":"Computation on dynamic n-tuples of particles is ubiquitous in scientific computing, with an archetypal application in many-body molecular dynamics (MD) simulations. We propose a tuple-decomposition (TD) approach that reorders computations according to dynamically created lists of n-tuples. We analyze the performance characteristics of the TD approach on general purpose graphics processing units for MD simulations involving pair (n = 2) and triplet (n = 3) interactions. The results show superior performance of the TD approach over the conventional particle-decomposition (PD) approach. Detailed analyses reveal the register footprint as the key factor that dictates the performance. Furthermore, the TD approach is found to outperform PD for more intensive computations of quadruplet (n = 4) interactions in first principles-informed reactive MD simulations based on the reactive force-field (ReaxFF) method. This work thus demonstrates the viable performance portability of the TD approach across a wide range of applications.","PeriodicalId":314778,"journal":{"name":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acceleration of Dynamic n-Tuple Computations in Many-Body Molecular Dynamics\",\"authors\":\"Patrick E. Small, Kuang Liu, S. Tiwari, R. Kalia, A. Nakano, K. Nomura, P. Vashishta\",\"doi\":\"10.1145/3149457.3149463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computation on dynamic n-tuples of particles is ubiquitous in scientific computing, with an archetypal application in many-body molecular dynamics (MD) simulations. We propose a tuple-decomposition (TD) approach that reorders computations according to dynamically created lists of n-tuples. We analyze the performance characteristics of the TD approach on general purpose graphics processing units for MD simulations involving pair (n = 2) and triplet (n = 3) interactions. The results show superior performance of the TD approach over the conventional particle-decomposition (PD) approach. Detailed analyses reveal the register footprint as the key factor that dictates the performance. Furthermore, the TD approach is found to outperform PD for more intensive computations of quadruplet (n = 4) interactions in first principles-informed reactive MD simulations based on the reactive force-field (ReaxFF) method. This work thus demonstrates the viable performance portability of the TD approach across a wide range of applications.\",\"PeriodicalId\":314778,\"journal\":{\"name\":\"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3149457.3149463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3149457.3149463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态粒子n元组的计算在科学计算中无处不在,在多体分子动力学(MD)模拟中有着典型的应用。我们提出了一种元分解(TD)方法,根据动态创建的n元组列表重新排序计算。我们分析了TD方法在通用图形处理单元上的性能特征,用于涉及对(n = 2)和三重态(n = 3)相互作用的MD仿真。结果表明,TD方法优于传统的颗粒分解方法。详细的分析表明,寄存器占用是决定性能的关键因素。此外,在基于反应力场(ReaxFF)方法的第一原理信息反应MD模拟中,TD方法在更密集的四重态(n = 4)相互作用计算中优于PD方法。因此,这项工作证明了TD方法在广泛应用程序中的可行性能可移植性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acceleration of Dynamic n-Tuple Computations in Many-Body Molecular Dynamics
Computation on dynamic n-tuples of particles is ubiquitous in scientific computing, with an archetypal application in many-body molecular dynamics (MD) simulations. We propose a tuple-decomposition (TD) approach that reorders computations according to dynamically created lists of n-tuples. We analyze the performance characteristics of the TD approach on general purpose graphics processing units for MD simulations involving pair (n = 2) and triplet (n = 3) interactions. The results show superior performance of the TD approach over the conventional particle-decomposition (PD) approach. Detailed analyses reveal the register footprint as the key factor that dictates the performance. Furthermore, the TD approach is found to outperform PD for more intensive computations of quadruplet (n = 4) interactions in first principles-informed reactive MD simulations based on the reactive force-field (ReaxFF) method. This work thus demonstrates the viable performance portability of the TD approach across a wide range of applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信