多通道信号建模和分离

S. Shamsunder, Georgios B. Giannakis
{"title":"多通道信号建模和分离","authors":"S. Shamsunder, Georgios B. Giannakis","doi":"10.1109/DSP.1994.379847","DOIUrl":null,"url":null,"abstract":"Separation of multiple signals from their superposition recorded at several sensors is addressed. The methods employ polyspectra of the sensor data in order to extract the unknown signals and estimate the exact coupling systems via a linear equation based method. Proposed schemes are also useful for multichannel blind deconvolution even when the input signals are colored with (possibly) overlapping spectra. Simulation results corroborate the applicability of the algorithm.<<ETX>>","PeriodicalId":189083,"journal":{"name":"Proceedings of IEEE 6th Digital Signal Processing Workshop","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multichannel signal modeling and separation\",\"authors\":\"S. Shamsunder, Georgios B. Giannakis\",\"doi\":\"10.1109/DSP.1994.379847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Separation of multiple signals from their superposition recorded at several sensors is addressed. The methods employ polyspectra of the sensor data in order to extract the unknown signals and estimate the exact coupling systems via a linear equation based method. Proposed schemes are also useful for multichannel blind deconvolution even when the input signals are colored with (possibly) overlapping spectra. Simulation results corroborate the applicability of the algorithm.<<ETX>>\",\"PeriodicalId\":189083,\"journal\":{\"name\":\"Proceedings of IEEE 6th Digital Signal Processing Workshop\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE 6th Digital Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSP.1994.379847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 6th Digital Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP.1994.379847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

从多个传感器记录的叠加中分离多个信号。该方法利用传感器数据的多光谱来提取未知信号,并通过基于线性方程的方法估计精确耦合系统。所提出的方案也适用于多通道盲反褶积,即使输入信号有(可能)重叠的光谱。仿真结果验证了该算法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multichannel signal modeling and separation
Separation of multiple signals from their superposition recorded at several sensors is addressed. The methods employ polyspectra of the sensor data in order to extract the unknown signals and estimate the exact coupling systems via a linear equation based method. Proposed schemes are also useful for multichannel blind deconvolution even when the input signals are colored with (possibly) overlapping spectra. Simulation results corroborate the applicability of the algorithm.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信