视觉不变步态识别的学习优化表征

Ning Jia, Victor Sanchez, Chang-Tsun Li
{"title":"视觉不变步态识别的学习优化表征","authors":"Ning Jia, Victor Sanchez, Chang-Tsun Li","doi":"10.1109/BTAS.2017.8272769","DOIUrl":null,"url":null,"abstract":"Gait recognition can be performed without subject cooperation under harsh conditions, thus it is an important tool in forensic gait analysis, security control, and other commercial applications. One critical issue that prevents gait recognition systems from being widely accepted is the performance drop when the camera viewpoint varies between the registered templates and the query data. In this paper, we explore the potential of combining feature optimisers and representations learned by convolutional neural networks (CNN) to achieve efficient view-invariant gait recognition. The experimental results indicate that CNN learns highly discriminative representations across moderate view variations, and these representations can be further improved using view-invariant feature selectors, achieving a high matching accuracy across views.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Learning optimised representations for view-invariant gait recognition\",\"authors\":\"Ning Jia, Victor Sanchez, Chang-Tsun Li\",\"doi\":\"10.1109/BTAS.2017.8272769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gait recognition can be performed without subject cooperation under harsh conditions, thus it is an important tool in forensic gait analysis, security control, and other commercial applications. One critical issue that prevents gait recognition systems from being widely accepted is the performance drop when the camera viewpoint varies between the registered templates and the query data. In this paper, we explore the potential of combining feature optimisers and representations learned by convolutional neural networks (CNN) to achieve efficient view-invariant gait recognition. The experimental results indicate that CNN learns highly discriminative representations across moderate view variations, and these representations can be further improved using view-invariant feature selectors, achieving a high matching accuracy across views.\",\"PeriodicalId\":372008,\"journal\":{\"name\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2017.8272769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

步态识别在恶劣条件下无需受试者配合即可完成,是法医步态分析、安全控制等商业应用的重要工具。阻碍步态识别系统被广泛接受的一个关键问题是,当摄像机视点在注册模板和查询数据之间变化时,性能会下降。在本文中,我们探索了将特征优化器和卷积神经网络(CNN)学习的表征相结合的潜力,以实现高效的视觉不变步态识别。实验结果表明,CNN在适度的视图变化中学习了高度判别的表征,并且这些表征可以使用视图不变的特征选择器进一步改进,从而在视图之间实现较高的匹配精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning optimised representations for view-invariant gait recognition
Gait recognition can be performed without subject cooperation under harsh conditions, thus it is an important tool in forensic gait analysis, security control, and other commercial applications. One critical issue that prevents gait recognition systems from being widely accepted is the performance drop when the camera viewpoint varies between the registered templates and the query data. In this paper, we explore the potential of combining feature optimisers and representations learned by convolutional neural networks (CNN) to achieve efficient view-invariant gait recognition. The experimental results indicate that CNN learns highly discriminative representations across moderate view variations, and these representations can be further improved using view-invariant feature selectors, achieving a high matching accuracy across views.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信