基于神经网络的mesfet / hemt偏置可扩展噪声模型

Z. Marinković, O. Pronic, V. Markovic, J. Randelovic
{"title":"基于神经网络的mesfet / hemt偏置可扩展噪声模型","authors":"Z. Marinković, O. Pronic, V. Markovic, J. Randelovic","doi":"10.1109/TELSKS.2005.1572131","DOIUrl":null,"url":null,"abstract":"A bias-dependent scalable microwave MESFET/HEMT noise model is proposed in this paper. It is based on a multilayer perceptron neural network that produces noise parameters at its outputs for device gate width, biases and frequency presented at its inputs. In that way determination of the noise parameters is enabled for various values of gate width and for all operating points over a wide frequency range. Once the network is trained its structure remains unchanged. After the network training, the noise parameters determination is done without additional optimizations and without need for the measured data that are required for the network training only.","PeriodicalId":422115,"journal":{"name":"TELSIKS 2005 - 2005 uth International Conference on Telecommunication in ModernSatellite, Cable and Broadcasting Services","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias dependent scalable noise models of MESFETs/HEMTs based on neural networks\",\"authors\":\"Z. Marinković, O. Pronic, V. Markovic, J. Randelovic\",\"doi\":\"10.1109/TELSKS.2005.1572131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bias-dependent scalable microwave MESFET/HEMT noise model is proposed in this paper. It is based on a multilayer perceptron neural network that produces noise parameters at its outputs for device gate width, biases and frequency presented at its inputs. In that way determination of the noise parameters is enabled for various values of gate width and for all operating points over a wide frequency range. Once the network is trained its structure remains unchanged. After the network training, the noise parameters determination is done without additional optimizations and without need for the measured data that are required for the network training only.\",\"PeriodicalId\":422115,\"journal\":{\"name\":\"TELSIKS 2005 - 2005 uth International Conference on Telecommunication in ModernSatellite, Cable and Broadcasting Services\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TELSIKS 2005 - 2005 uth International Conference on Telecommunication in ModernSatellite, Cable and Broadcasting Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELSKS.2005.1572131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TELSIKS 2005 - 2005 uth International Conference on Telecommunication in ModernSatellite, Cable and Broadcasting Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELSKS.2005.1572131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种与偏置相关的可扩展微波MESFET/HEMT噪声模型。它基于多层感知器神经网络,该网络在其输出端为输入端呈现的器件门宽、偏置和频率产生噪声参数。通过这种方式,可以对栅极宽度的各种值和宽频率范围内的所有工作点确定噪声参数。一旦网络被训练,它的结构就保持不变。在网络训练之后,噪声参数的确定不需要额外的优化,也不需要只用于网络训练的测量数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bias dependent scalable noise models of MESFETs/HEMTs based on neural networks
A bias-dependent scalable microwave MESFET/HEMT noise model is proposed in this paper. It is based on a multilayer perceptron neural network that produces noise parameters at its outputs for device gate width, biases and frequency presented at its inputs. In that way determination of the noise parameters is enabled for various values of gate width and for all operating points over a wide frequency range. Once the network is trained its structure remains unchanged. After the network training, the noise parameters determination is done without additional optimizations and without need for the measured data that are required for the network training only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信