近单晶硅密度液体压缩系数的测量方法

Xin-yu Ma, Jin-tao Wang, Zhi-Yong Luo
{"title":"近单晶硅密度液体压缩系数的测量方法","authors":"Xin-yu Ma, Jin-tao Wang, Zhi-Yong Luo","doi":"10.1117/12.2512095","DOIUrl":null,"url":null,"abstract":"The standard near-silicon liquid (2329kg/m3) is a mixture liquid of tribromopropane and dibromoethane in a certain proportion. This liquid is used to measure the density of single crystal silicon spheres by a static suspension method and the analysis of the difference in the micro density between two silicon spheres. Measuring the difference in the micro-density of the silicon spheres is of great significance for the new definition of the new mass of kilograms. In order to obtain the micro-density difference of the silicon spheres, it is necessary to calculate the static pressure value and the temperature by separately adjusting the singlecrystal silicon spheres to the same suspension state and the compression coefficient of the near-monocrystalline silicon density liquid. Through the adjustment of the same hydrostatic suspension state of a single silica ball in different suspension states, the linear constants measured by the linear model are analyzed to calculate the liquid compression coefficient. For this purpose, a static suspension measuring device for a single crystal silicon ball was designed to maintain the water bath within a range of ±0.1mk within 3 hours, and the position control of the silicon ball was determined by controlling the pressure of the upper computer.","PeriodicalId":115119,"journal":{"name":"International Symposium on Precision Engineering Measurement and Instrumentation","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement method of the compression coefficient of near-monocrystalline silicon density liquid\",\"authors\":\"Xin-yu Ma, Jin-tao Wang, Zhi-Yong Luo\",\"doi\":\"10.1117/12.2512095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The standard near-silicon liquid (2329kg/m3) is a mixture liquid of tribromopropane and dibromoethane in a certain proportion. This liquid is used to measure the density of single crystal silicon spheres by a static suspension method and the analysis of the difference in the micro density between two silicon spheres. Measuring the difference in the micro-density of the silicon spheres is of great significance for the new definition of the new mass of kilograms. In order to obtain the micro-density difference of the silicon spheres, it is necessary to calculate the static pressure value and the temperature by separately adjusting the singlecrystal silicon spheres to the same suspension state and the compression coefficient of the near-monocrystalline silicon density liquid. Through the adjustment of the same hydrostatic suspension state of a single silica ball in different suspension states, the linear constants measured by the linear model are analyzed to calculate the liquid compression coefficient. For this purpose, a static suspension measuring device for a single crystal silicon ball was designed to maintain the water bath within a range of ±0.1mk within 3 hours, and the position control of the silicon ball was determined by controlling the pressure of the upper computer.\",\"PeriodicalId\":115119,\"journal\":{\"name\":\"International Symposium on Precision Engineering Measurement and Instrumentation\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Precision Engineering Measurement and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2512095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Precision Engineering Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2512095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

标准的近硅液(2329kg/m3)是三溴丙烷和二溴乙烷按一定比例混合而成的液体。用该液体用静态悬浮法测量了单晶硅球的密度,并分析了两个硅球的微密度差异。测量硅球的微密度差对新质量千克的新定义具有重要意义。为了获得硅球的微密度差值,需要通过将单晶硅球分别调整到相同悬浮状态和近单晶硅密度液体的压缩系数来计算静压值和温度。通过调整同一静压悬浮状态下单个硅胶球在不同悬浮状态下的线性常数,分析线性模型所测得的线性常数,计算液体压缩系数。为此,设计了单晶硅球静态悬浮测量装置,使水浴在3小时内保持在±0.1mk的范围内,通过控制上位机的压力来确定硅球的位置控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement method of the compression coefficient of near-monocrystalline silicon density liquid
The standard near-silicon liquid (2329kg/m3) is a mixture liquid of tribromopropane and dibromoethane in a certain proportion. This liquid is used to measure the density of single crystal silicon spheres by a static suspension method and the analysis of the difference in the micro density between two silicon spheres. Measuring the difference in the micro-density of the silicon spheres is of great significance for the new definition of the new mass of kilograms. In order to obtain the micro-density difference of the silicon spheres, it is necessary to calculate the static pressure value and the temperature by separately adjusting the singlecrystal silicon spheres to the same suspension state and the compression coefficient of the near-monocrystalline silicon density liquid. Through the adjustment of the same hydrostatic suspension state of a single silica ball in different suspension states, the linear constants measured by the linear model are analyzed to calculate the liquid compression coefficient. For this purpose, a static suspension measuring device for a single crystal silicon ball was designed to maintain the water bath within a range of ±0.1mk within 3 hours, and the position control of the silicon ball was determined by controlling the pressure of the upper computer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信