滑动窗口上聚合的高效增量计算

Chao Zhang, Reza Akbarinia, F. Toumani
{"title":"滑动窗口上聚合的高效增量计算","authors":"Chao Zhang, Reza Akbarinia, F. Toumani","doi":"10.1145/3447548.3467360","DOIUrl":null,"url":null,"abstract":"Computing aggregation over sliding windows, i.e., finite subsets of an unbounded stream, is a core operation in streaming analytics. We propose PBA (Parallel Boundary Aggregator), a novel parallel algorithm that groups continuous slices of streaming values into chunks and exploits two buffers, cumulative slice aggregations and left cumulative slice aggregations, to compute sliding window aggregations efficiently. PBA runs in O(1) time, performing at most 3 merging operations per slide while consuming O(n) space for windows with n partial aggregations. Our empirical experiments demonstrate that PBA can improve throughput up to 4X while reducing latency, compared to state-of-the-art algorithms.","PeriodicalId":421090,"journal":{"name":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient Incremental Computation of Aggregations over Sliding Windows\",\"authors\":\"Chao Zhang, Reza Akbarinia, F. Toumani\",\"doi\":\"10.1145/3447548.3467360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing aggregation over sliding windows, i.e., finite subsets of an unbounded stream, is a core operation in streaming analytics. We propose PBA (Parallel Boundary Aggregator), a novel parallel algorithm that groups continuous slices of streaming values into chunks and exploits two buffers, cumulative slice aggregations and left cumulative slice aggregations, to compute sliding window aggregations efficiently. PBA runs in O(1) time, performing at most 3 merging operations per slide while consuming O(n) space for windows with n partial aggregations. Our empirical experiments demonstrate that PBA can improve throughput up to 4X while reducing latency, compared to state-of-the-art algorithms.\",\"PeriodicalId\":421090,\"journal\":{\"name\":\"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447548.3467360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447548.3467360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

计算滑动窗口上的聚合,即无界流的有限子集,是流分析的核心操作。我们提出了一种新的并行算法PBA (Parallel Boundary Aggregator),它将流值的连续切片分组成块,并利用两个缓冲区,累积切片聚合和左累积切片聚合,来有效地计算滑动窗口聚合。PBA在O(1)个时间内运行,每张幻灯片最多执行3个合并操作,同时对于具有n个部分聚合的窗口消耗O(n)个空间。我们的经验实验表明,与最先进的算法相比,PBA可以将吞吐量提高4倍,同时减少延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Incremental Computation of Aggregations over Sliding Windows
Computing aggregation over sliding windows, i.e., finite subsets of an unbounded stream, is a core operation in streaming analytics. We propose PBA (Parallel Boundary Aggregator), a novel parallel algorithm that groups continuous slices of streaming values into chunks and exploits two buffers, cumulative slice aggregations and left cumulative slice aggregations, to compute sliding window aggregations efficiently. PBA runs in O(1) time, performing at most 3 merging operations per slide while consuming O(n) space for windows with n partial aggregations. Our empirical experiments demonstrate that PBA can improve throughput up to 4X while reducing latency, compared to state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信