盲图像去模糊与极端梯度和暗通道先验

Chao Yang, Qing Li, Chun Xing Li, Yu Zheng
{"title":"盲图像去模糊与极端梯度和暗通道先验","authors":"Chao Yang, Qing Li, Chun Xing Li, Yu Zheng","doi":"10.1109/ISCTIS58954.2023.10212998","DOIUrl":null,"url":null,"abstract":"This paper presents a novel blind image deblurring algorithm based on extreme gradient and dark channel priors. Traditional methods relying solely on local maximum or minimum gradient priors to estimate the latent image often suffer from ringing artifacts or loss of high frequency information in low gradient areas. To solve those problems, we combine local minimum and maximum gradient prior information to better constrain the solution space. Experimental results show that the proposed algorithm achieves better restoration performance with detail preservation, noise suppression, and robustness on blurry images including face, low light scene, and text. In addition, our algorithm outperforms other methods on Levin and Köhler datasets, with significant improvement in PSNR and SSIM.","PeriodicalId":334790,"journal":{"name":"2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind Image Deblurring with Extreme Gradient and Dark Channel Priors\",\"authors\":\"Chao Yang, Qing Li, Chun Xing Li, Yu Zheng\",\"doi\":\"10.1109/ISCTIS58954.2023.10212998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel blind image deblurring algorithm based on extreme gradient and dark channel priors. Traditional methods relying solely on local maximum or minimum gradient priors to estimate the latent image often suffer from ringing artifacts or loss of high frequency information in low gradient areas. To solve those problems, we combine local minimum and maximum gradient prior information to better constrain the solution space. Experimental results show that the proposed algorithm achieves better restoration performance with detail preservation, noise suppression, and robustness on blurry images including face, low light scene, and text. In addition, our algorithm outperforms other methods on Levin and Köhler datasets, with significant improvement in PSNR and SSIM.\",\"PeriodicalId\":334790,\"journal\":{\"name\":\"2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCTIS58954.2023.10212998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCTIS58954.2023.10212998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于极端梯度和暗通道先验的图像去模糊算法。传统的单纯依靠局部最大或最小梯度先验估计潜在图像的方法,在低梯度区域容易产生环形伪影或丢失高频信息。为了解决这些问题,我们结合了局部最小和最大梯度先验信息来更好地约束解空间。实验结果表明,该算法在人脸、弱光场景和文本等模糊图像上具有较好的细节保留、噪声抑制和鲁棒性。此外,我们的算法在Levin和Köhler数据集上优于其他方法,在PSNR和SSIM上有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind Image Deblurring with Extreme Gradient and Dark Channel Priors
This paper presents a novel blind image deblurring algorithm based on extreme gradient and dark channel priors. Traditional methods relying solely on local maximum or minimum gradient priors to estimate the latent image often suffer from ringing artifacts or loss of high frequency information in low gradient areas. To solve those problems, we combine local minimum and maximum gradient prior information to better constrain the solution space. Experimental results show that the proposed algorithm achieves better restoration performance with detail preservation, noise suppression, and robustness on blurry images including face, low light scene, and text. In addition, our algorithm outperforms other methods on Levin and Köhler datasets, with significant improvement in PSNR and SSIM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信