Y. Bilu, F. Luca, Joris Nieuwveld, J. Ouaknine, David Purser, J. Worrell
{"title":"Skolem Meets Schanuel","authors":"Y. Bilu, F. Luca, Joris Nieuwveld, J. Ouaknine, David Purser, J. Worrell","doi":"10.48550/arXiv.2204.13417","DOIUrl":null,"url":null,"abstract":"The celebrated Skolem-Mahler-Lech Theorem states that the set of zeros of a linear recurrence sequence is the union of a finite set and finitely many arithmetic progressions. The corresponding computational question, the Skolem Problem, asks to determine whether a given linear recurrence sequence has a zero term. Although the Skolem-Mahler-Lech Theorem is almost 90 years old, decidability of the Skolem Problem remains open. The main contribution of this paper is an algorithm to solve the Skolem Problem for simple linear recurrence sequences (those with simple characteristic roots). Whenever the algorithm terminates, it produces a stand-alone certificate that its output is correct -- a set of zeros together with a collection of witnesses that no further zeros exist. We give a proof that the algorithm always terminates assuming two classical number-theoretic conjectures: the Skolem Conjecture (also known as the Exponential Local-Global Principle) and the $p$-adic Schanuel Conjecture. Preliminary experiments with an implementation of this algorithm within the tool \\textsc{Skolem} point to the practical applicability of this method.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"400 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.13417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

著名的Skolem-Mahler-Lech定理指出,线性递归序列的零集合是一个有限集合和有限多个等差数列的并集。相应的计算问题,Skolem问题,要求确定给定的线性递归序列是否有零项。虽然斯科勒姆-马勒-莱赫定理已经有将近90年的历史了,但斯科勒姆问题的可决性仍然是开放的。本文的主要贡献是一种求解简单线性递归序列(具有简单特征根的序列)的Skolem问题的算法。每当算法终止时,它都会生成一个独立的证书,证明其输出是正确的——一组零和一组不存在其他零的见证。我们在两个经典数论猜想:Skolem猜想(也称为指数局部-全局原理)和$p$ -adic Schanuel猜想的假设下证明了该算法总是终止的。在工具\textsc{Skolem}中实现该算法的初步实验表明了该方法的实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skolem Meets Schanuel
The celebrated Skolem-Mahler-Lech Theorem states that the set of zeros of a linear recurrence sequence is the union of a finite set and finitely many arithmetic progressions. The corresponding computational question, the Skolem Problem, asks to determine whether a given linear recurrence sequence has a zero term. Although the Skolem-Mahler-Lech Theorem is almost 90 years old, decidability of the Skolem Problem remains open. The main contribution of this paper is an algorithm to solve the Skolem Problem for simple linear recurrence sequences (those with simple characteristic roots). Whenever the algorithm terminates, it produces a stand-alone certificate that its output is correct -- a set of zeros together with a collection of witnesses that no further zeros exist. We give a proof that the algorithm always terminates assuming two classical number-theoretic conjectures: the Skolem Conjecture (also known as the Exponential Local-Global Principle) and the $p$-adic Schanuel Conjecture. Preliminary experiments with an implementation of this algorithm within the tool \textsc{Skolem} point to the practical applicability of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信