学习通过神经网络和Wasserstein训练来模拟顺序生成的数据

Tingyu Zhu, Haoyu Liu, Zeyu Zheng
{"title":"学习通过神经网络和Wasserstein训练来模拟顺序生成的数据","authors":"Tingyu Zhu, Haoyu Liu, Zeyu Zheng","doi":"10.1145/3583070","DOIUrl":null,"url":null,"abstract":"We propose a new framework of a neural network-assisted sequential structured simulator to model, estimate, and simulate a wide class of sequentially generated data. Neural networks are integrated into the sequentially structured simulators in order to capture potential nonlinear and complicated sequential structures. Given representative real data, the neural network parameters in the simulator are estimated through a Wasserstein training process, without restrictive distributional assumptions. Moreover, the simulator can flexibly incorporate various kinds of elementary randomness and generate distributions with certain properties such as heavy-tail. Regarding statistical properties, we provide results on consistency and convergence rate for estimation of the simulator. We then present numerical experiments with synthetic and real data sets to illustrate the performance of our estimation method.","PeriodicalId":369368,"journal":{"name":"2021 Winter Simulation Conference (WSC)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning to Simulate Sequentially Generated Data via Neural Networks and Wasserstein Training\",\"authors\":\"Tingyu Zhu, Haoyu Liu, Zeyu Zheng\",\"doi\":\"10.1145/3583070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new framework of a neural network-assisted sequential structured simulator to model, estimate, and simulate a wide class of sequentially generated data. Neural networks are integrated into the sequentially structured simulators in order to capture potential nonlinear and complicated sequential structures. Given representative real data, the neural network parameters in the simulator are estimated through a Wasserstein training process, without restrictive distributional assumptions. Moreover, the simulator can flexibly incorporate various kinds of elementary randomness and generate distributions with certain properties such as heavy-tail. Regarding statistical properties, we provide results on consistency and convergence rate for estimation of the simulator. We then present numerical experiments with synthetic and real data sets to illustrate the performance of our estimation method.\",\"PeriodicalId\":369368,\"journal\":{\"name\":\"2021 Winter Simulation Conference (WSC)\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3583070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一个新的框架的神经网络辅助顺序结构化模拟器,以建模,估计,并模拟一系列的顺序生成的数据。为了捕获潜在的非线性和复杂的序列结构,将神经网络集成到序列结构模拟器中。给定具有代表性的真实数据,在没有限制性分布假设的情况下,通过Wasserstein训练过程估计模拟器中的神经网络参数。此外,该模拟器可以灵活地结合各种初等随机性,生成具有一定性质的分布,如重尾分布。在统计性质方面,我们提供了一致性和收敛率的结果,用于模拟器的估计。然后,我们用合成数据集和真实数据集进行了数值实验,以说明我们的估计方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to Simulate Sequentially Generated Data via Neural Networks and Wasserstein Training
We propose a new framework of a neural network-assisted sequential structured simulator to model, estimate, and simulate a wide class of sequentially generated data. Neural networks are integrated into the sequentially structured simulators in order to capture potential nonlinear and complicated sequential structures. Given representative real data, the neural network parameters in the simulator are estimated through a Wasserstein training process, without restrictive distributional assumptions. Moreover, the simulator can flexibly incorporate various kinds of elementary randomness and generate distributions with certain properties such as heavy-tail. Regarding statistical properties, we provide results on consistency and convergence rate for estimation of the simulator. We then present numerical experiments with synthetic and real data sets to illustrate the performance of our estimation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信