基于潜在回归贝叶斯网络和端到端模式的藏语多方言语音识别

Yue Zhao, Jianjian Yue, Wei Song, Xiaona Xu, Xiali Li, Licheng Wu, Q. Ji
{"title":"基于潜在回归贝叶斯网络和端到端模式的藏语多方言语音识别","authors":"Yue Zhao, Jianjian Yue, Wei Song, Xiaona Xu, Xiali Li, Licheng Wu, Q. Ji","doi":"10.32604/JIOT.2019.05866","DOIUrl":null,"url":null,"abstract":"We proposed a method using latent regression Bayesian network (LRBN) to extract the shared speech feature for the input of end-to-end speech recognition model. The structure of LRBN is compact and its parameter learning is fast. Compared with Convolutional Neural Network, it has a simpler and understood structure and less parameters to learn. Experimental results show that the advantage of hybrid LRBN/Bidirectional Long Short-Term Memory-Connectionist Temporal Classification architecture for Tibetan multi-dialect speech recognition, and demonstrate the LRBN is helpful to differentiate among multiple language speech sets.","PeriodicalId":345256,"journal":{"name":"Journal on Internet of Things","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tibetan Multi-Dialect Speech Recognition Using Latent Regression Bayesian Network and End-To-End Mode\",\"authors\":\"Yue Zhao, Jianjian Yue, Wei Song, Xiaona Xu, Xiali Li, Licheng Wu, Q. Ji\",\"doi\":\"10.32604/JIOT.2019.05866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed a method using latent regression Bayesian network (LRBN) to extract the shared speech feature for the input of end-to-end speech recognition model. The structure of LRBN is compact and its parameter learning is fast. Compared with Convolutional Neural Network, it has a simpler and understood structure and less parameters to learn. Experimental results show that the advantage of hybrid LRBN/Bidirectional Long Short-Term Memory-Connectionist Temporal Classification architecture for Tibetan multi-dialect speech recognition, and demonstrate the LRBN is helpful to differentiate among multiple language speech sets.\",\"PeriodicalId\":345256,\"journal\":{\"name\":\"Journal on Internet of Things\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32604/JIOT.2019.05866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/JIOT.2019.05866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于潜在回归贝叶斯网络(LRBN)的共享语音特征提取方法,用于端到端语音识别模型的输入。LRBN结构紧凑,参数学习速度快。与卷积神经网络相比,它具有更简单易懂的结构和更少的学习参数。实验结果表明,混合LRBN/双向长短期记忆-连接主义时态分类架构在藏语多方言语音识别中的优势,并证明了LRBN对多语言语音集的区分有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tibetan Multi-Dialect Speech Recognition Using Latent Regression Bayesian Network and End-To-End Mode
We proposed a method using latent regression Bayesian network (LRBN) to extract the shared speech feature for the input of end-to-end speech recognition model. The structure of LRBN is compact and its parameter learning is fast. Compared with Convolutional Neural Network, it has a simpler and understood structure and less parameters to learn. Experimental results show that the advantage of hybrid LRBN/Bidirectional Long Short-Term Memory-Connectionist Temporal Classification architecture for Tibetan multi-dialect speech recognition, and demonstrate the LRBN is helpful to differentiate among multiple language speech sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信