M. Isa, M. Abubakar, Kabiru H. Ibrahim, I. Yusuf, Ismail Tukur
{"title":"基于Copula分布的透明桥复串并联计算机网络性能分析","authors":"M. Isa, M. Abubakar, Kabiru H. Ibrahim, I. Yusuf, Ismail Tukur","doi":"10.30699/ijrrs.4.1.7","DOIUrl":null,"url":null,"abstract":"A network bridge is a computer networking device that creates a single aggregate network from multiple communication network or network segments. One of the type of network bridge is transparent bridge saddle with responsibility of checking incoming network traffic to identify media access control addresses. In this present research work on series parallel computer network performance, availability and cost analysis of complex computer network was considered to focus on a network that has four subsystems A, B, C and D and all the subsystems are arranged in series-parallel, subsystem A and B are working on 1-out-of-2: G and 2-out-of-3: F policy respectively, C subsystem behaved as a bridge with one unit and D subsystem has five units and are working in 3-out-of-5: G scheme. The system has two types of failure, degraded (partial failure) or complete failed states. The system was analyzed using supplementary variables techniques and Laplace transform, general distribution and copula family were employed to restore the partial failure and complete failure states. Computed results have been highlighted by the means of tables and graphs to investigate the performance of computer network. The result has shown that computer network with transparent bridge will be more reliable to filter incoming frame and forward it to media access control (MAC).","PeriodicalId":395350,"journal":{"name":"International Journal of Reliability, Risk and Safety: Theory and Application","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Complex Series Parallel Computer Network with Transparent Bridge Using Copula Distribution\",\"authors\":\"M. Isa, M. Abubakar, Kabiru H. Ibrahim, I. Yusuf, Ismail Tukur\",\"doi\":\"10.30699/ijrrs.4.1.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A network bridge is a computer networking device that creates a single aggregate network from multiple communication network or network segments. One of the type of network bridge is transparent bridge saddle with responsibility of checking incoming network traffic to identify media access control addresses. In this present research work on series parallel computer network performance, availability and cost analysis of complex computer network was considered to focus on a network that has four subsystems A, B, C and D and all the subsystems are arranged in series-parallel, subsystem A and B are working on 1-out-of-2: G and 2-out-of-3: F policy respectively, C subsystem behaved as a bridge with one unit and D subsystem has five units and are working in 3-out-of-5: G scheme. The system has two types of failure, degraded (partial failure) or complete failed states. The system was analyzed using supplementary variables techniques and Laplace transform, general distribution and copula family were employed to restore the partial failure and complete failure states. Computed results have been highlighted by the means of tables and graphs to investigate the performance of computer network. The result has shown that computer network with transparent bridge will be more reliable to filter incoming frame and forward it to media access control (MAC).\",\"PeriodicalId\":395350,\"journal\":{\"name\":\"International Journal of Reliability, Risk and Safety: Theory and Application\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reliability, Risk and Safety: Theory and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30699/ijrrs.4.1.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliability, Risk and Safety: Theory and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30699/ijrrs.4.1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Analysis of Complex Series Parallel Computer Network with Transparent Bridge Using Copula Distribution
A network bridge is a computer networking device that creates a single aggregate network from multiple communication network or network segments. One of the type of network bridge is transparent bridge saddle with responsibility of checking incoming network traffic to identify media access control addresses. In this present research work on series parallel computer network performance, availability and cost analysis of complex computer network was considered to focus on a network that has four subsystems A, B, C and D and all the subsystems are arranged in series-parallel, subsystem A and B are working on 1-out-of-2: G and 2-out-of-3: F policy respectively, C subsystem behaved as a bridge with one unit and D subsystem has five units and are working in 3-out-of-5: G scheme. The system has two types of failure, degraded (partial failure) or complete failed states. The system was analyzed using supplementary variables techniques and Laplace transform, general distribution and copula family were employed to restore the partial failure and complete failure states. Computed results have been highlighted by the means of tables and graphs to investigate the performance of computer network. The result has shown that computer network with transparent bridge will be more reliable to filter incoming frame and forward it to media access control (MAC).