分区细化双仿真的下限

J. F. Groote, Jan Martens, E. Vink
{"title":"分区细化双仿真的下限","authors":"J. F. Groote, Jan Martens, E. Vink","doi":"10.48550/arXiv.2203.07158","DOIUrl":null,"url":null,"abstract":"We provide time lower bounds for sequential and parallel algorithms deciding\nbisimulation on labeled transition systems that use partition refinement. For\nsequential algorithms this is $\\Omega((m \\mkern1mu {+} \\mkern1mu n ) \\mkern-1mu\n\\log \\mkern-1mu n)$ and for parallel algorithms this is $\\Omega(n)$, where $n$\nis the number of states and $m$ is the number of transitions. The lowerbounds\nare obtained by analysing families of deterministic transition systems,\nultimately with two actions in the sequential case, and one action for parallel\nalgorithms. For deterministic transition systems with one action, bisimilarity\ncan be decided sequentially with fundamentally different techniques than\npartition refinement. In particular, Paige, Tarjan, and Bonic give a linear\nalgorithm for this specific situation. We show, exploiting the concept of an\noracle, that this approach is not of help to develop a faster generic algorithm\nfor deciding bisimilarity. For parallel algorithms there is a similar situation\nwhere these techniques may be applied, too.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lowerbounds for Bisimulation by Partition Refinement\",\"authors\":\"J. F. Groote, Jan Martens, E. Vink\",\"doi\":\"10.48550/arXiv.2203.07158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide time lower bounds for sequential and parallel algorithms deciding\\nbisimulation on labeled transition systems that use partition refinement. For\\nsequential algorithms this is $\\\\Omega((m \\\\mkern1mu {+} \\\\mkern1mu n ) \\\\mkern-1mu\\n\\\\log \\\\mkern-1mu n)$ and for parallel algorithms this is $\\\\Omega(n)$, where $n$\\nis the number of states and $m$ is the number of transitions. The lowerbounds\\nare obtained by analysing families of deterministic transition systems,\\nultimately with two actions in the sequential case, and one action for parallel\\nalgorithms. For deterministic transition systems with one action, bisimilarity\\ncan be decided sequentially with fundamentally different techniques than\\npartition refinement. In particular, Paige, Tarjan, and Bonic give a linear\\nalgorithm for this specific situation. We show, exploiting the concept of an\\noracle, that this approach is not of help to develop a faster generic algorithm\\nfor deciding bisimilarity. For parallel algorithms there is a similar situation\\nwhere these techniques may be applied, too.\",\"PeriodicalId\":314387,\"journal\":{\"name\":\"Log. Methods Comput. Sci.\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. Methods Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2203.07158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.07158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提供了时序和并行算法的时间下界,这些算法决定了使用分区细化的标记转移系统的双仿真。对于顺序算法,这是$\Omega((m \mkern1mu {+} \mkern1mu n ) \mkern-1mu\log \mkern-1mu n)$,对于并行算法,这是$\Omega(n)$,其中$n$是状态的数量,$m$是转换的数量。通过分析确定性过渡系统族,最终在顺序情况下具有两个动作,而在并行算法中具有一个动作,从而获得了下限。对于具有一个动作的确定性过渡系统,可以使用与划分细化完全不同的技术来顺序确定双相似性。特别地,Paige, Tarjan和Bonic给出了一种线性算法。我们表明,利用一个预言的概念,这种方法无助于开发一个更快的通用算法来决定双相似性。对于并行算法,也有类似的情况可以应用这些技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lowerbounds for Bisimulation by Partition Refinement
We provide time lower bounds for sequential and parallel algorithms deciding bisimulation on labeled transition systems that use partition refinement. For sequential algorithms this is $\Omega((m \mkern1mu {+} \mkern1mu n ) \mkern-1mu \log \mkern-1mu n)$ and for parallel algorithms this is $\Omega(n)$, where $n$ is the number of states and $m$ is the number of transitions. The lowerbounds are obtained by analysing families of deterministic transition systems, ultimately with two actions in the sequential case, and one action for parallel algorithms. For deterministic transition systems with one action, bisimilarity can be decided sequentially with fundamentally different techniques than partition refinement. In particular, Paige, Tarjan, and Bonic give a linear algorithm for this specific situation. We show, exploiting the concept of an oracle, that this approach is not of help to develop a faster generic algorithm for deciding bisimilarity. For parallel algorithms there is a similar situation where these techniques may be applied, too.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信