基于高斯激活的智能自适应各向异性扩散滤波深度神经网络图像分类

G. Praveenkumar, R. Nagaraj
{"title":"基于高斯激活的智能自适应各向异性扩散滤波深度神经网络图像分类","authors":"G. Praveenkumar, R. Nagaraj","doi":"10.1109/ICCMC53470.2022.9753971","DOIUrl":null,"url":null,"abstract":"This paper presents a novel adaptive anisotropic diffusion filtered deep neural network (AADF-DNN) model for achieving effective image classification with increase the accuracy and reduces the running time, false-positive ratio. The proposed AADF-DNN model uses deep learning and Gaussian activation function to reduce the false-positive ratio. First, a number of input images are given to the input layer get pre-processed by adaptive anisotropic diffusion filtered reducing the noise. Then, the input layer sends the input images into hidden layers. The hidden layer is used to extract significant features such as shape, color, texture, and size for reducing the running time. Next, the Gaussian activation function is used to classify the images into corresponding classes based on the measurement value between the extracted features and pre-stored features. Finally, the classification results of input images are obtained. Experimental results illustrate that the AADF-DNN model enhances the classification of image performance with higher accuracy at the minimal running time than compared to the PCGRBM.","PeriodicalId":345346,"journal":{"name":"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intelligent Adaptive Anisotropic Diffusion Filtered Deep Neural Network With Gaussian Activation For Image Classification\",\"authors\":\"G. Praveenkumar, R. Nagaraj\",\"doi\":\"10.1109/ICCMC53470.2022.9753971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel adaptive anisotropic diffusion filtered deep neural network (AADF-DNN) model for achieving effective image classification with increase the accuracy and reduces the running time, false-positive ratio. The proposed AADF-DNN model uses deep learning and Gaussian activation function to reduce the false-positive ratio. First, a number of input images are given to the input layer get pre-processed by adaptive anisotropic diffusion filtered reducing the noise. Then, the input layer sends the input images into hidden layers. The hidden layer is used to extract significant features such as shape, color, texture, and size for reducing the running time. Next, the Gaussian activation function is used to classify the images into corresponding classes based on the measurement value between the extracted features and pre-stored features. Finally, the classification results of input images are obtained. Experimental results illustrate that the AADF-DNN model enhances the classification of image performance with higher accuracy at the minimal running time than compared to the PCGRBM.\",\"PeriodicalId\":345346,\"journal\":{\"name\":\"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCMC53470.2022.9753971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC53470.2022.9753971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的自适应各向异性扩散滤波深度神经网络(AADF-DNN)模型,提高了图像分类的精度,减少了运行时间和误报率。提出的AADF-DNN模型采用深度学习和高斯激活函数来降低误报率。首先,将多幅输入图像输入到输入层,通过自适应各向异性扩散滤波预处理,降低噪声;然后,输入层将输入图像发送到隐藏层。隐藏层用于提取形状、颜色、纹理和大小等重要特征,以减少运行时间。然后,根据提取的特征与预存储的特征之间的测量值,利用高斯激活函数对图像进行分类。最后,得到输入图像的分类结果。实验结果表明,与PCGRBM相比,AADF-DNN模型在最短的运行时间内以更高的准确率增强了图像分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Adaptive Anisotropic Diffusion Filtered Deep Neural Network With Gaussian Activation For Image Classification
This paper presents a novel adaptive anisotropic diffusion filtered deep neural network (AADF-DNN) model for achieving effective image classification with increase the accuracy and reduces the running time, false-positive ratio. The proposed AADF-DNN model uses deep learning and Gaussian activation function to reduce the false-positive ratio. First, a number of input images are given to the input layer get pre-processed by adaptive anisotropic diffusion filtered reducing the noise. Then, the input layer sends the input images into hidden layers. The hidden layer is used to extract significant features such as shape, color, texture, and size for reducing the running time. Next, the Gaussian activation function is used to classify the images into corresponding classes based on the measurement value between the extracted features and pre-stored features. Finally, the classification results of input images are obtained. Experimental results illustrate that the AADF-DNN model enhances the classification of image performance with higher accuracy at the minimal running time than compared to the PCGRBM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信