野外便携式成像热辐射光谱仪的异常气体遥感与跟踪

E. Ohel, S. Rotman, D. Blumberg, L. Sagiv
{"title":"野外便携式成像热辐射光谱仪的异常气体遥感与跟踪","authors":"E. Ohel, S. Rotman, D. Blumberg, L. Sagiv","doi":"10.1117/12.687021","DOIUrl":null,"url":null,"abstract":"Using a set of radiometric thermal hyperspectral data cubes, we developed an algorithm which detects the formation of an anomalous gas cloud. Once we've established the presence of the cloud in the latter images, we determine the origin of the cloud in the earlier ones and track its propagation. Gas usually expands from point sources and it is difficult to know whether it is significant when it occupies merely a few pixels in the image. After the gas size expands, it is easier to analyze as an interesting anomalous feature. Our algorithm includes techniques such as the improved K-Means classification, Spectral Angle Mapper (SAM), match filter and tracking; in the paper we will show results based on real data taken by the \"FIRST\" camera (Field-portable Imaging Radiometric Spectrometer Technology).","PeriodicalId":142814,"journal":{"name":"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Anomaly Gas Remote Sensing and Tracking Using a Field-Portable Imaging Thermal Radiometric Spectrometer\",\"authors\":\"E. Ohel, S. Rotman, D. Blumberg, L. Sagiv\",\"doi\":\"10.1117/12.687021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a set of radiometric thermal hyperspectral data cubes, we developed an algorithm which detects the formation of an anomalous gas cloud. Once we've established the presence of the cloud in the latter images, we determine the origin of the cloud in the earlier ones and track its propagation. Gas usually expands from point sources and it is difficult to know whether it is significant when it occupies merely a few pixels in the image. After the gas size expands, it is easier to analyze as an interesting anomalous feature. Our algorithm includes techniques such as the improved K-Means classification, Spectral Angle Mapper (SAM), match filter and tracking; in the paper we will show results based on real data taken by the \\\"FIRST\\\" camera (Field-portable Imaging Radiometric Spectrometer Technology).\",\"PeriodicalId\":142814,\"journal\":{\"name\":\"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.687021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.687021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

利用一组辐射热高光谱数据立方体,我们开发了一种检测异常气体云形成的算法。一旦我们在后面的图像中确定了云的存在,我们就可以在前面的图像中确定云的起源,并跟踪它的传播。气体通常从点源膨胀,当它在图像中仅占几个像素时,很难知道它是否重要。在气体尺寸扩大后,它更容易作为一个有趣的异常特征来分析。我们的算法包括改进的k均值分类、光谱角映射器(SAM)、匹配滤波和跟踪等技术;在本文中,我们将展示基于“FIRST”相机(野外便携式成像辐射光谱仪技术)拍摄的真实数据的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly Gas Remote Sensing and Tracking Using a Field-Portable Imaging Thermal Radiometric Spectrometer
Using a set of radiometric thermal hyperspectral data cubes, we developed an algorithm which detects the formation of an anomalous gas cloud. Once we've established the presence of the cloud in the latter images, we determine the origin of the cloud in the earlier ones and track its propagation. Gas usually expands from point sources and it is difficult to know whether it is significant when it occupies merely a few pixels in the image. After the gas size expands, it is easier to analyze as an interesting anomalous feature. Our algorithm includes techniques such as the improved K-Means classification, Spectral Angle Mapper (SAM), match filter and tracking; in the paper we will show results based on real data taken by the "FIRST" camera (Field-portable Imaging Radiometric Spectrometer Technology).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信