{"title":"海报:弥合深度学习和稀疏矩阵格式选择之间的差距","authors":"Yue Zhao, Jiajia Li, C. Liao, Xipeng Shen","doi":"10.1109/PACT.2017.33","DOIUrl":null,"url":null,"abstract":"In this work, we conduct a systematic exploration on the promise and challenges of deep learning for the sparse matrix format selection. We propose a set of novel techniques to solve special challenges to deep learning, including input matrix representations, a late-merging deep neural network structure design, and the use of transfer learning to alleviate cross-architecture portability issues.","PeriodicalId":438103,"journal":{"name":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"POSTER: Bridging the Gap Between Deep Learning and Sparse Matrix Format Selection\",\"authors\":\"Yue Zhao, Jiajia Li, C. Liao, Xipeng Shen\",\"doi\":\"10.1109/PACT.2017.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we conduct a systematic exploration on the promise and challenges of deep learning for the sparse matrix format selection. We propose a set of novel techniques to solve special challenges to deep learning, including input matrix representations, a late-merging deep neural network structure design, and the use of transfer learning to alleviate cross-architecture portability issues.\",\"PeriodicalId\":438103,\"journal\":{\"name\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2017.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2017.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
POSTER: Bridging the Gap Between Deep Learning and Sparse Matrix Format Selection
In this work, we conduct a systematic exploration on the promise and challenges of deep learning for the sparse matrix format selection. We propose a set of novel techniques to solve special challenges to deep learning, including input matrix representations, a late-merging deep neural network structure design, and the use of transfer learning to alleviate cross-architecture portability issues.