CMP集群系统上并行科学应用的性能分析与优化

Xingfu Wu, V. Taylor, Charles W. Lively, S. Sharkawi
{"title":"CMP集群系统上并行科学应用的性能分析与优化","authors":"Xingfu Wu, V. Taylor, Charles W. Lively, S. Sharkawi","doi":"10.1109/ICPP-W.2008.21","DOIUrl":null,"url":null,"abstract":"Chip multiprocessors (CMP) are widely used for high performance computing. Further, these CMPs are being configured in a hierarchical manner to compose a node in a cluster system. A major challenge to be addressed is efficient use of such cluster systems for large-scale scientific applications. In this paper, we quantify the performance gap resulting from using different number of processors per node; this information is used to provide a baseline for the amount of optimization needed when using all processors per node on CMP clusters. We conduct detailed performance analysis to identify how applications can be modified to efficiently utilize all processors per node on CMP clusters, especially focusing on two scientific applications: a 3D particle-in-cell, magnetic fusion application gyrokinetic toroidal code (GTC) and a lattice Boltzmann method for simulating fluid dynamics (LBM). In terms of refinements, we use conventional techniques such as cache blocking, loop unrolling and loop fusion, and develop hybrid methods for optimizing MPI_Allreduce and MPI_Reduce. Using these optimizations, the application performance for utilizing all processors per node was improved by up to 18.97% for GTC and 15.77% for LBM on up to 2048 total processors on the CMP clusters.","PeriodicalId":231042,"journal":{"name":"2008 International Conference on Parallel Processing - Workshops","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Performance Analysis and Optimization of Parallel Scientific Applications on CMP Cluster Systems\",\"authors\":\"Xingfu Wu, V. Taylor, Charles W. Lively, S. Sharkawi\",\"doi\":\"10.1109/ICPP-W.2008.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chip multiprocessors (CMP) are widely used for high performance computing. Further, these CMPs are being configured in a hierarchical manner to compose a node in a cluster system. A major challenge to be addressed is efficient use of such cluster systems for large-scale scientific applications. In this paper, we quantify the performance gap resulting from using different number of processors per node; this information is used to provide a baseline for the amount of optimization needed when using all processors per node on CMP clusters. We conduct detailed performance analysis to identify how applications can be modified to efficiently utilize all processors per node on CMP clusters, especially focusing on two scientific applications: a 3D particle-in-cell, magnetic fusion application gyrokinetic toroidal code (GTC) and a lattice Boltzmann method for simulating fluid dynamics (LBM). In terms of refinements, we use conventional techniques such as cache blocking, loop unrolling and loop fusion, and develop hybrid methods for optimizing MPI_Allreduce and MPI_Reduce. Using these optimizations, the application performance for utilizing all processors per node was improved by up to 18.97% for GTC and 15.77% for LBM on up to 2048 total processors on the CMP clusters.\",\"PeriodicalId\":231042,\"journal\":{\"name\":\"2008 International Conference on Parallel Processing - Workshops\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Parallel Processing - Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP-W.2008.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Parallel Processing - Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP-W.2008.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

芯片多处理器(CMP)广泛用于高性能计算。此外,这些cmp以分层方式配置,以组成集群系统中的节点。需要解决的一个主要挑战是有效地将这种集群系统用于大规模科学应用。在本文中,我们量化了由于每个节点使用不同数量的处理器而导致的性能差距;此信息用于为在CMP集群上使用每个节点上的所有处理器时所需的优化量提供基线。我们进行了详细的性能分析,以确定如何修改应用程序以有效地利用CMP集群上的每个节点的所有处理器,特别是关注两个科学应用:三维粒子在细胞中,磁融合应用回旋动力学环面代码(GTC)和晶格玻尔兹曼方法模拟流体动力学(LBM)。在改进方面,我们使用了传统的技术,如缓存阻塞、循环展开和循环融合,并开发了优化MPI_Allreduce和MPI_Reduce的混合方法。通过这些优化,在CMP集群上最多2048个处理器的情况下,使用每个节点的所有处理器的应用程序性能在GTC上提高了18.97%,在LBM上提高了15.77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis and Optimization of Parallel Scientific Applications on CMP Cluster Systems
Chip multiprocessors (CMP) are widely used for high performance computing. Further, these CMPs are being configured in a hierarchical manner to compose a node in a cluster system. A major challenge to be addressed is efficient use of such cluster systems for large-scale scientific applications. In this paper, we quantify the performance gap resulting from using different number of processors per node; this information is used to provide a baseline for the amount of optimization needed when using all processors per node on CMP clusters. We conduct detailed performance analysis to identify how applications can be modified to efficiently utilize all processors per node on CMP clusters, especially focusing on two scientific applications: a 3D particle-in-cell, magnetic fusion application gyrokinetic toroidal code (GTC) and a lattice Boltzmann method for simulating fluid dynamics (LBM). In terms of refinements, we use conventional techniques such as cache blocking, loop unrolling and loop fusion, and develop hybrid methods for optimizing MPI_Allreduce and MPI_Reduce. Using these optimizations, the application performance for utilizing all processors per node was improved by up to 18.97% for GTC and 15.77% for LBM on up to 2048 total processors on the CMP clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信