射频图像形成的多分辨率时域方法

R. Bonneau
{"title":"射频图像形成的多分辨率时域方法","authors":"R. Bonneau","doi":"10.1109/AIPR.2004.5","DOIUrl":null,"url":null,"abstract":"Conventional image formation approaches rely on frequency domain Fourier methods to create images of objects. Most rely on integrating spatial resolution in the Fourier domain and do not accurately factor in the spatial aperture function to create an image because of the uniform spatial sampling necessary for the Fourier transform. We propose a multiresolution approach based on a Greens function inverse scattering method that allows us to solve for the object function directly in the time domain thereby allowing a more accurate rendering of the object in question.","PeriodicalId":120814,"journal":{"name":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A multiresolution time domain approach to RF image formation\",\"authors\":\"R. Bonneau\",\"doi\":\"10.1109/AIPR.2004.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional image formation approaches rely on frequency domain Fourier methods to create images of objects. Most rely on integrating spatial resolution in the Fourier domain and do not accurately factor in the spatial aperture function to create an image because of the uniform spatial sampling necessary for the Fourier transform. We propose a multiresolution approach based on a Greens function inverse scattering method that allows us to solve for the object function directly in the time domain thereby allowing a more accurate rendering of the object in question.\",\"PeriodicalId\":120814,\"journal\":{\"name\":\"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2004.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2004.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

传统的图像形成方法依赖于频域傅立叶方法来创建物体的图像。大多数依赖于积分空间分辨率的傅里叶域和不准确的因素在空间孔径函数,以创建一个图像,因为均匀的空间采样必要的傅里叶变换。我们提出了一种基于格林函数逆散射方法的多分辨率方法,该方法允许我们直接在时域中求解目标函数,从而允许对所讨论的目标进行更准确的渲染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multiresolution time domain approach to RF image formation
Conventional image formation approaches rely on frequency domain Fourier methods to create images of objects. Most rely on integrating spatial resolution in the Fourier domain and do not accurately factor in the spatial aperture function to create an image because of the uniform spatial sampling necessary for the Fourier transform. We propose a multiresolution approach based on a Greens function inverse scattering method that allows us to solve for the object function directly in the time domain thereby allowing a more accurate rendering of the object in question.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信