{"title":"对称性和可积性","authors":"B. Jovanović","doi":"10.2298/PIM0898001J","DOIUrl":null,"url":null,"abstract":"This is a survey on finite-dimensional integrable dynamical sys- tems related to Hamiltonian G-actions. Within a framework of noncommu- tative integrability we study integrability of G-invariant systems, collective motions and reduced integrability. We also consider reductions of the Hamil- tonian flows restricted to their invariant submanifolds generalizing classical Hess-Appel'rot case of a heavy rigid body motion.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"100","resultStr":"{\"title\":\"Symmetries and integrability\",\"authors\":\"B. Jovanović\",\"doi\":\"10.2298/PIM0898001J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a survey on finite-dimensional integrable dynamical sys- tems related to Hamiltonian G-actions. Within a framework of noncommu- tative integrability we study integrability of G-invariant systems, collective motions and reduced integrability. We also consider reductions of the Hamil- tonian flows restricted to their invariant submanifolds generalizing classical Hess-Appel'rot case of a heavy rigid body motion.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"100\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM0898001J\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM0898001J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This is a survey on finite-dimensional integrable dynamical sys- tems related to Hamiltonian G-actions. Within a framework of noncommu- tative integrability we study integrability of G-invariant systems, collective motions and reduced integrability. We also consider reductions of the Hamil- tonian flows restricted to their invariant submanifolds generalizing classical Hess-Appel'rot case of a heavy rigid body motion.