一种有效的异构数据库属性匹配多分类器策略

Baohua Qiang, Tinglei Huang
{"title":"一种有效的异构数据库属性匹配多分类器策略","authors":"Baohua Qiang, Tinglei Huang","doi":"10.1109/CYBERC.2009.5342147","DOIUrl":null,"url":null,"abstract":"Attributes matching is crucial to implement data sharing and interoperability across heterogeneous databases. In order to lay a theoretical foundation for our multi-classifier strategy, we analyze the limitations that use a single trained neural network to determine the corresponding attributes. The analyzed result demonstrates the theoretical possibility that different input vectors map the same output vector by a single-trained neural network. This could result in mismatching and consequently decrease the matching accuracy. Based on the theoretical result and instance analysis, an effective multi-classifier algorithm for attributes matching is proposed in this paper. We verify the correctness of our analysis and proposed multi-classifier strategy by using our previous experimental results.","PeriodicalId":222874,"journal":{"name":"2009 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective multi-classifier strategy for attributes matching in heterogeneous databases\",\"authors\":\"Baohua Qiang, Tinglei Huang\",\"doi\":\"10.1109/CYBERC.2009.5342147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attributes matching is crucial to implement data sharing and interoperability across heterogeneous databases. In order to lay a theoretical foundation for our multi-classifier strategy, we analyze the limitations that use a single trained neural network to determine the corresponding attributes. The analyzed result demonstrates the theoretical possibility that different input vectors map the same output vector by a single-trained neural network. This could result in mismatching and consequently decrease the matching accuracy. Based on the theoretical result and instance analysis, an effective multi-classifier algorithm for attributes matching is proposed in this paper. We verify the correctness of our analysis and proposed multi-classifier strategy by using our previous experimental results.\",\"PeriodicalId\":222874,\"journal\":{\"name\":\"2009 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERC.2009.5342147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2009.5342147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

属性匹配对于实现跨异构数据库的数据共享和互操作性至关重要。为了为我们的多分类器策略奠定理论基础,我们分析了使用单个训练的神经网络来确定相应属性的局限性。分析结果表明,通过单一训练的神经网络,不同的输入向量映射到相同的输出向量在理论上是可能的。这可能导致不匹配,从而降低匹配精度。在理论结果和实例分析的基础上,提出了一种有效的多分类器属性匹配算法。我们用之前的实验结果验证了分析的正确性,并提出了多分类器策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effective multi-classifier strategy for attributes matching in heterogeneous databases
Attributes matching is crucial to implement data sharing and interoperability across heterogeneous databases. In order to lay a theoretical foundation for our multi-classifier strategy, we analyze the limitations that use a single trained neural network to determine the corresponding attributes. The analyzed result demonstrates the theoretical possibility that different input vectors map the same output vector by a single-trained neural network. This could result in mismatching and consequently decrease the matching accuracy. Based on the theoretical result and instance analysis, an effective multi-classifier algorithm for attributes matching is proposed in this paper. We verify the correctness of our analysis and proposed multi-classifier strategy by using our previous experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信