虚拟发电部落发电调度的分散强化学习协同共识算法

Li Qing, Zhang Xiaoshun, Pan Zhenning, Tan Min, Guo Lexin, Y. Tao, Liu Qianjin, Feng Yongkun
{"title":"虚拟发电部落发电调度的分散强化学习协同共识算法","authors":"Li Qing, Zhang Xiaoshun, Pan Zhenning, Tan Min, Guo Lexin, Y. Tao, Liu Qianjin, Feng Yongkun","doi":"10.1109/IAEAC.2015.7428749","DOIUrl":null,"url":null,"abstract":"The article proposes a distributed reinforcement learning collaborative consensus algorithm for dynamic generation command dispatch of AGC in interconnected power grids under the framework of the virtual power generation tribes, in order to in response to the development of the EMS system in the Smart Grid from centralization to decentralized form. The simulation results of the Guangdong Grid show that: the algorithm can not only enhance the adaptive and dynamic performance of the system but also can reduce the adjustment cost as well as realizing the optimal allocation of automatic generation control.","PeriodicalId":398100,"journal":{"name":"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Decentralized reinforcement learning collaborative consensus algorithm for generation dispatch in virtual generation tribe\",\"authors\":\"Li Qing, Zhang Xiaoshun, Pan Zhenning, Tan Min, Guo Lexin, Y. Tao, Liu Qianjin, Feng Yongkun\",\"doi\":\"10.1109/IAEAC.2015.7428749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article proposes a distributed reinforcement learning collaborative consensus algorithm for dynamic generation command dispatch of AGC in interconnected power grids under the framework of the virtual power generation tribes, in order to in response to the development of the EMS system in the Smart Grid from centralization to decentralized form. The simulation results of the Guangdong Grid show that: the algorithm can not only enhance the adaptive and dynamic performance of the system but also can reduce the adjustment cost as well as realizing the optimal allocation of automatic generation control.\",\"PeriodicalId\":398100,\"journal\":{\"name\":\"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAEAC.2015.7428749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC.2015.7428749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了适应智能电网中EMS系统由集中式向分散式的发展,本文提出了一种虚拟发电部落框架下互联电网AGC动态生成指挥调度的分布式强化学习协同共识算法。广东电网的仿真结果表明:该算法不仅提高了系统的自适应性能和动态性能,而且降低了调节成本,实现了自动发电控制的最优分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decentralized reinforcement learning collaborative consensus algorithm for generation dispatch in virtual generation tribe
The article proposes a distributed reinforcement learning collaborative consensus algorithm for dynamic generation command dispatch of AGC in interconnected power grids under the framework of the virtual power generation tribes, in order to in response to the development of the EMS system in the Smart Grid from centralization to decentralized form. The simulation results of the Guangdong Grid show that: the algorithm can not only enhance the adaptive and dynamic performance of the system but also can reduce the adjustment cost as well as realizing the optimal allocation of automatic generation control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信