基于web日志的协同过滤系统中的双k均值算法研究

Dongmeng Guo, Yun Liu, Jian Li, Xiong Fei, Yixiang Zhu
{"title":"基于web日志的协同过滤系统中的双k均值算法研究","authors":"Dongmeng Guo, Yun Liu, Jian Li, Xiong Fei, Yixiang Zhu","doi":"10.1145/2925995.2926046","DOIUrl":null,"url":null,"abstract":"A collaborative filtering algorithm is designed and improved in this paper, which can optimize and improve the sparsity and extention of data in systems. We can Use the user's implicit information in the web log to cluster analysis on user set and by using the dual K-means algorithm, and we can use the K-means algorithm in each clustering set to further improve the effectiveness of the recommendation of the target users. By contrasting the experimental results, this method compared to the performance of other collaborative filtering algorithms have better performance in those sites browsed by large amount of users.","PeriodicalId":159180,"journal":{"name":"Proceedings of the The 11th International Knowledge Management in Organizations Conference on The changing face of Knowledge Management Impacting Society","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on dual K-means algorithm in collaborative filtering system based on web log\",\"authors\":\"Dongmeng Guo, Yun Liu, Jian Li, Xiong Fei, Yixiang Zhu\",\"doi\":\"10.1145/2925995.2926046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A collaborative filtering algorithm is designed and improved in this paper, which can optimize and improve the sparsity and extention of data in systems. We can Use the user's implicit information in the web log to cluster analysis on user set and by using the dual K-means algorithm, and we can use the K-means algorithm in each clustering set to further improve the effectiveness of the recommendation of the target users. By contrasting the experimental results, this method compared to the performance of other collaborative filtering algorithms have better performance in those sites browsed by large amount of users.\",\"PeriodicalId\":159180,\"journal\":{\"name\":\"Proceedings of the The 11th International Knowledge Management in Organizations Conference on The changing face of Knowledge Management Impacting Society\",\"volume\":\"256 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the The 11th International Knowledge Management in Organizations Conference on The changing face of Knowledge Management Impacting Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2925995.2926046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the The 11th International Knowledge Management in Organizations Conference on The changing face of Knowledge Management Impacting Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2925995.2926046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文设计并改进了一种协同过滤算法,该算法可以优化和提高系统中数据的稀疏性和可扩展性。我们可以利用web日志中的用户隐式信息对用户集进行聚类分析,并使用双K-means算法,在每个聚类集中使用K-means算法,进一步提高目标用户推荐的有效性。通过实验结果对比,该方法相对于其他协同过滤算法的性能,在用户访问量较大的站点具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on dual K-means algorithm in collaborative filtering system based on web log
A collaborative filtering algorithm is designed and improved in this paper, which can optimize and improve the sparsity and extention of data in systems. We can Use the user's implicit information in the web log to cluster analysis on user set and by using the dual K-means algorithm, and we can use the K-means algorithm in each clustering set to further improve the effectiveness of the recommendation of the target users. By contrasting the experimental results, this method compared to the performance of other collaborative filtering algorithms have better performance in those sites browsed by large amount of users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信