使用矢量量化的医学图像压缩和表征:自组织映射和四叉树分解的应用

G. Cazuguel, A. Cziho, B. Solaiman, C. Roux
{"title":"使用矢量量化的医学图像压缩和表征:自组织映射和四叉树分解的应用","authors":"G. Cazuguel, A. Cziho, B. Solaiman, C. Roux","doi":"10.1109/ITAB.1998.674691","DOIUrl":null,"url":null,"abstract":"Vector quantization (VQ) is an effective image compression approach. Among the different existing algorithms, Kohonen's self organizing feature map (SOFM) is one of the well known methods for VQ. It allows efficient codebook design with interesting topological properties. Furthermore, use of VQ for compression gives, in the same process, basic information on the image content. But in order to preserve the diagnostic accuracy in medical applications, the block size is restricted to small values (3/spl times/3, 4/spl times/4), which limits the compression rate. We propose to improve the compression performance by using several codebooks containing codewords of different size, according to the quadtree decomposition of the images. Results are compared to those provided by the standard JPEG image compression algorithm. Finally we explain how it is possible to generate characteristic signature maps of images using compression information. The paper represents an extension of the work presented by G. Cauguel et al. (1997).","PeriodicalId":126564,"journal":{"name":"Proceedings. 1998 IEEE International Conference on Information Technology Applications in Biomedicine, ITAB '98 (Cat. No.98EX188)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Medical image compression and characterization using vector quantization: an application of self-organizing maps and quadtree decomposition\",\"authors\":\"G. Cazuguel, A. Cziho, B. Solaiman, C. Roux\",\"doi\":\"10.1109/ITAB.1998.674691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vector quantization (VQ) is an effective image compression approach. Among the different existing algorithms, Kohonen's self organizing feature map (SOFM) is one of the well known methods for VQ. It allows efficient codebook design with interesting topological properties. Furthermore, use of VQ for compression gives, in the same process, basic information on the image content. But in order to preserve the diagnostic accuracy in medical applications, the block size is restricted to small values (3/spl times/3, 4/spl times/4), which limits the compression rate. We propose to improve the compression performance by using several codebooks containing codewords of different size, according to the quadtree decomposition of the images. Results are compared to those provided by the standard JPEG image compression algorithm. Finally we explain how it is possible to generate characteristic signature maps of images using compression information. The paper represents an extension of the work presented by G. Cauguel et al. (1997).\",\"PeriodicalId\":126564,\"journal\":{\"name\":\"Proceedings. 1998 IEEE International Conference on Information Technology Applications in Biomedicine, ITAB '98 (Cat. No.98EX188)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1998 IEEE International Conference on Information Technology Applications in Biomedicine, ITAB '98 (Cat. No.98EX188)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITAB.1998.674691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1998 IEEE International Conference on Information Technology Applications in Biomedicine, ITAB '98 (Cat. No.98EX188)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITAB.1998.674691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

矢量量化(VQ)是一种有效的图像压缩方法。在已有的各种算法中,Kohonen的自组织特征映射(SOFM)是一种比较有名的VQ算法。它允许具有有趣拓扑特性的高效码本设计。此外,使用VQ进行压缩,在相同的过程中,提供了图像内容的基本信息。但在医疗应用中,为了保持诊断的准确性,块大小被限制在较小的值(3/spl倍/ 3,4 /spl倍/4),这限制了压缩率。我们提出根据图像的四叉树分解,使用包含不同大小码字的多个码本来提高压缩性能。结果与标准JPEG图像压缩算法提供的结果进行了比较。最后,我们解释了如何使用压缩信息生成图像的特征签名映射。本文代表了G. Cauguel等人(1997)提出的工作的延伸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Medical image compression and characterization using vector quantization: an application of self-organizing maps and quadtree decomposition
Vector quantization (VQ) is an effective image compression approach. Among the different existing algorithms, Kohonen's self organizing feature map (SOFM) is one of the well known methods for VQ. It allows efficient codebook design with interesting topological properties. Furthermore, use of VQ for compression gives, in the same process, basic information on the image content. But in order to preserve the diagnostic accuracy in medical applications, the block size is restricted to small values (3/spl times/3, 4/spl times/4), which limits the compression rate. We propose to improve the compression performance by using several codebooks containing codewords of different size, according to the quadtree decomposition of the images. Results are compared to those provided by the standard JPEG image compression algorithm. Finally we explain how it is possible to generate characteristic signature maps of images using compression information. The paper represents an extension of the work presented by G. Cauguel et al. (1997).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信