{"title":"受波浪作用的水上弹塑性梁","authors":"K. Iijima, Akira Tatsumi, M. Fujikubo","doi":"10.1115/OMAE2018-78646","DOIUrl":null,"url":null,"abstract":"This paper addresses development of a mathematical model which describes the behavior of an elasto-plastic beam afloat on water surface. The mathematical model is valid for predicting the collapse of a Very Large Floating Structure (VLFS) subjected to extreme wave-induced vertical bending moment. It is a follow-up of the previous work in which the collapse behavior of a VLFS is pursued by adopting a segmented beam approach. In this research, the whole VLFS is modelled with elasto-plastic beam elements. The hydrodynamic behavior is modeled by using Rankine source panel method based on time-domain potential theory. It is shown that the elasto-plastic beam approach gives almost the same result as the segmented beam approach for predicting the one-element collapse behavior. The elastoplastic beam approach is extensively used to predict the progressive collapse spread over multiple sections, which cannot be followed by the segmented beam approach.","PeriodicalId":106551,"journal":{"name":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Elasto-Plastic Beam Afloat on Water Subjected to Waves\",\"authors\":\"K. Iijima, Akira Tatsumi, M. Fujikubo\",\"doi\":\"10.1115/OMAE2018-78646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses development of a mathematical model which describes the behavior of an elasto-plastic beam afloat on water surface. The mathematical model is valid for predicting the collapse of a Very Large Floating Structure (VLFS) subjected to extreme wave-induced vertical bending moment. It is a follow-up of the previous work in which the collapse behavior of a VLFS is pursued by adopting a segmented beam approach. In this research, the whole VLFS is modelled with elasto-plastic beam elements. The hydrodynamic behavior is modeled by using Rankine source panel method based on time-domain potential theory. It is shown that the elasto-plastic beam approach gives almost the same result as the segmented beam approach for predicting the one-element collapse behavior. The elastoplastic beam approach is extensively used to predict the progressive collapse spread over multiple sections, which cannot be followed by the segmented beam approach.\",\"PeriodicalId\":106551,\"journal\":{\"name\":\"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/OMAE2018-78646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-78646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elasto-Plastic Beam Afloat on Water Subjected to Waves
This paper addresses development of a mathematical model which describes the behavior of an elasto-plastic beam afloat on water surface. The mathematical model is valid for predicting the collapse of a Very Large Floating Structure (VLFS) subjected to extreme wave-induced vertical bending moment. It is a follow-up of the previous work in which the collapse behavior of a VLFS is pursued by adopting a segmented beam approach. In this research, the whole VLFS is modelled with elasto-plastic beam elements. The hydrodynamic behavior is modeled by using Rankine source panel method based on time-domain potential theory. It is shown that the elasto-plastic beam approach gives almost the same result as the segmented beam approach for predicting the one-element collapse behavior. The elastoplastic beam approach is extensively used to predict the progressive collapse spread over multiple sections, which cannot be followed by the segmented beam approach.