A. Artikis, Nikos Katzouris, Ivo Correia, Chris Baber, Natan Morar, Inna Skarbovsky, Fabiana Fournier, G. Paliouras
{"title":"信用卡诈骗管理的原型:工业论文","authors":"A. Artikis, Nikos Katzouris, Ivo Correia, Chris Baber, Natan Morar, Inna Skarbovsky, Fabiana Fournier, G. Paliouras","doi":"10.1145/3093742.3093912","DOIUrl":null,"url":null,"abstract":"To prevent problems and capitalise on opportunities before they even occur, the research project SPEEDD proposed a methodology, and developed a prototype for proactive event-driven decisionmaking. We present the application of this methodology to credit card fraud management. The machine learning component of the SPEEDD prototype supports the online construction of fraud patterns, allowing it to efficiently adapt to the continuously changing fraud types. Moreover, the user interface of the prototype enables fraud analysts to make the most out of the results of automation (complex event processing) and thus reach informed decisions. Unlike most academic research on credit card fraud management, the assessment of the prototype (components) is based on representative transaction datasets, allowing for a realistic evaluation.","PeriodicalId":325666,"journal":{"name":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","volume":"55 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A Prototype for Credit Card Fraud Management: Industry Paper\",\"authors\":\"A. Artikis, Nikos Katzouris, Ivo Correia, Chris Baber, Natan Morar, Inna Skarbovsky, Fabiana Fournier, G. Paliouras\",\"doi\":\"10.1145/3093742.3093912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To prevent problems and capitalise on opportunities before they even occur, the research project SPEEDD proposed a methodology, and developed a prototype for proactive event-driven decisionmaking. We present the application of this methodology to credit card fraud management. The machine learning component of the SPEEDD prototype supports the online construction of fraud patterns, allowing it to efficiently adapt to the continuously changing fraud types. Moreover, the user interface of the prototype enables fraud analysts to make the most out of the results of automation (complex event processing) and thus reach informed decisions. Unlike most academic research on credit card fraud management, the assessment of the prototype (components) is based on representative transaction datasets, allowing for a realistic evaluation.\",\"PeriodicalId\":325666,\"journal\":{\"name\":\"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems\",\"volume\":\"55 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3093742.3093912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3093742.3093912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Prototype for Credit Card Fraud Management: Industry Paper
To prevent problems and capitalise on opportunities before they even occur, the research project SPEEDD proposed a methodology, and developed a prototype for proactive event-driven decisionmaking. We present the application of this methodology to credit card fraud management. The machine learning component of the SPEEDD prototype supports the online construction of fraud patterns, allowing it to efficiently adapt to the continuously changing fraud types. Moreover, the user interface of the prototype enables fraud analysts to make the most out of the results of automation (complex event processing) and thus reach informed decisions. Unlike most academic research on credit card fraud management, the assessment of the prototype (components) is based on representative transaction datasets, allowing for a realistic evaluation.