{"title":"数据中心网络建模与仿真","authors":"R. Alshahrani, H. Peyravi","doi":"10.1145/2601381.2601389","DOIUrl":null,"url":null,"abstract":"Data centers are integral part of cloud computing that support Web services, online social networking, data analysis, computation intensive applications and scientific computing. They require high performance components for their inter-process communication, storage and sub-communication systems. The performance bottleneck that used to be the processing power has now been shifted to communication speed within data centers. The performance of a data center, in terms of throughput and delay, is directly related to the performance of the underlying internal communication network. In this paper, we introduce an analytical model that can be used to evaluate the underlying network architecture in data centers. The model can further be used to develop simulation tools that extend the scope of performance evaluation beyond what it can be achieved by the theoretical model in terms of various network topologies, different traffic distributions, scalability, and load balancing. While the model is generic, we focus on its implementation for fat-tree networks that are widely used in data centers. The theoretical results are compared and validated with the simulation results for several network configurations. The results of this analysis provide a basis for data center network design and optimization.","PeriodicalId":255272,"journal":{"name":"SIGSIM Principles of Advanced Discrete Simulation","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Modeling and simulation of data center networks\",\"authors\":\"R. Alshahrani, H. Peyravi\",\"doi\":\"10.1145/2601381.2601389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data centers are integral part of cloud computing that support Web services, online social networking, data analysis, computation intensive applications and scientific computing. They require high performance components for their inter-process communication, storage and sub-communication systems. The performance bottleneck that used to be the processing power has now been shifted to communication speed within data centers. The performance of a data center, in terms of throughput and delay, is directly related to the performance of the underlying internal communication network. In this paper, we introduce an analytical model that can be used to evaluate the underlying network architecture in data centers. The model can further be used to develop simulation tools that extend the scope of performance evaluation beyond what it can be achieved by the theoretical model in terms of various network topologies, different traffic distributions, scalability, and load balancing. While the model is generic, we focus on its implementation for fat-tree networks that are widely used in data centers. The theoretical results are compared and validated with the simulation results for several network configurations. The results of this analysis provide a basis for data center network design and optimization.\",\"PeriodicalId\":255272,\"journal\":{\"name\":\"SIGSIM Principles of Advanced Discrete Simulation\",\"volume\":\"217 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSIM Principles of Advanced Discrete Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2601381.2601389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSIM Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2601381.2601389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data centers are integral part of cloud computing that support Web services, online social networking, data analysis, computation intensive applications and scientific computing. They require high performance components for their inter-process communication, storage and sub-communication systems. The performance bottleneck that used to be the processing power has now been shifted to communication speed within data centers. The performance of a data center, in terms of throughput and delay, is directly related to the performance of the underlying internal communication network. In this paper, we introduce an analytical model that can be used to evaluate the underlying network architecture in data centers. The model can further be used to develop simulation tools that extend the scope of performance evaluation beyond what it can be achieved by the theoretical model in terms of various network topologies, different traffic distributions, scalability, and load balancing. While the model is generic, we focus on its implementation for fat-tree networks that are widely used in data centers. The theoretical results are compared and validated with the simulation results for several network configurations. The results of this analysis provide a basis for data center network design and optimization.