综合计算材料工程与单调高斯过程

A. Tran, K. Maupin, T. Rodgers
{"title":"综合计算材料工程与单调高斯过程","authors":"A. Tran, K. Maupin, T. Rodgers","doi":"10.1115/detc2022-89213","DOIUrl":null,"url":null,"abstract":"\n Physics-constrained machine learning is emerging as an important topic in the field of machine learning for physics. One of the most significant advantages of incorporating physics constraints into machine learning methods is that the resulting machine learning model requires significantly fewer data to train. By incorporating physical rules into the machine learning formulation itself, the predictions are expected to be physically plausible. Gaussian process (GP) is perhaps one of the most common methods in machine learning for small datasets. In this paper, we investigate the possibility of constraining a GP formulation with monotonicity on two different material datasets, where one experimental and one computational dataset is used. The monotonic GP is compared against the regular GP, where a significant reduction in the posterior variance is observed. The monotonic GP is strictly monotonic in the interpolation regime, but in the extrapolation regime, the monotonic effect starts fading away as one goes beyond the training dataset. Imposing monotonicity on the GP comes at a small accuracy cost, compared to the regular GP. The monotonic GP is perhaps most useful in applications where data is scarce and noisy or when the dimensionality is high, and monotonicity is where supported by strong physical reasoning.","PeriodicalId":382970,"journal":{"name":"Volume 2: 42nd Computers and Information in Engineering Conference (CIE)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrated Computational Materials Engineering With Monotonic Gaussian Processes\",\"authors\":\"A. Tran, K. Maupin, T. Rodgers\",\"doi\":\"10.1115/detc2022-89213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Physics-constrained machine learning is emerging as an important topic in the field of machine learning for physics. One of the most significant advantages of incorporating physics constraints into machine learning methods is that the resulting machine learning model requires significantly fewer data to train. By incorporating physical rules into the machine learning formulation itself, the predictions are expected to be physically plausible. Gaussian process (GP) is perhaps one of the most common methods in machine learning for small datasets. In this paper, we investigate the possibility of constraining a GP formulation with monotonicity on two different material datasets, where one experimental and one computational dataset is used. The monotonic GP is compared against the regular GP, where a significant reduction in the posterior variance is observed. The monotonic GP is strictly monotonic in the interpolation regime, but in the extrapolation regime, the monotonic effect starts fading away as one goes beyond the training dataset. Imposing monotonicity on the GP comes at a small accuracy cost, compared to the regular GP. The monotonic GP is perhaps most useful in applications where data is scarce and noisy or when the dimensionality is high, and monotonicity is where supported by strong physical reasoning.\",\"PeriodicalId\":382970,\"journal\":{\"name\":\"Volume 2: 42nd Computers and Information in Engineering Conference (CIE)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 42nd Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2022-89213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 42nd Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2022-89213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

物理约束机器学习是物理机器学习领域的一个重要课题。将物理约束纳入机器学习方法的最显著优势之一是,生成的机器学习模型需要的训练数据要少得多。通过将物理规则纳入机器学习公式本身,预计预测在物理上是合理的。高斯过程(GP)可能是小数据集机器学习中最常用的方法之一。在本文中,我们研究了在两个不同的材料数据集上约束具有单调性的GP公式的可能性,其中使用了一个实验数据集和一个计算数据集。将单调GP与常规GP进行比较,观察到后验方差显著减小。单调GP在插值范围内是严格单调的,但在外推范围内,单调效应随着超出训练数据集而开始消失。与常规GP相比,对GP施加单调性的精度代价很小。单调GP可能在数据稀缺和有噪声的应用程序中最有用,或者当维数很高时,单调性是由强大的物理推理支持的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated Computational Materials Engineering With Monotonic Gaussian Processes
Physics-constrained machine learning is emerging as an important topic in the field of machine learning for physics. One of the most significant advantages of incorporating physics constraints into machine learning methods is that the resulting machine learning model requires significantly fewer data to train. By incorporating physical rules into the machine learning formulation itself, the predictions are expected to be physically plausible. Gaussian process (GP) is perhaps one of the most common methods in machine learning for small datasets. In this paper, we investigate the possibility of constraining a GP formulation with monotonicity on two different material datasets, where one experimental and one computational dataset is used. The monotonic GP is compared against the regular GP, where a significant reduction in the posterior variance is observed. The monotonic GP is strictly monotonic in the interpolation regime, but in the extrapolation regime, the monotonic effect starts fading away as one goes beyond the training dataset. Imposing monotonicity on the GP comes at a small accuracy cost, compared to the regular GP. The monotonic GP is perhaps most useful in applications where data is scarce and noisy or when the dimensionality is high, and monotonicity is where supported by strong physical reasoning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信