具有快速收敛和抗耦合噪声鲁棒性的无线传感器网络分布式处理算法

S. Barbarossa, T. Battisti, L. Pescosolido, S. Sardellitti, G. Scutari
{"title":"具有快速收敛和抗耦合噪声鲁棒性的无线传感器网络分布式处理算法","authors":"S. Barbarossa, T. Battisti, L. Pescosolido, S. Sardellitti, G. Scutari","doi":"10.1109/ISSSTA.2008.7","DOIUrl":null,"url":null,"abstract":"Designing sensor networks with decentralized and autonomous decisions capabilities, i.e., without the need to send all the collected data to a fusion center, is a big challenge that is receiving considerable attention. One of the major drawbacks of distributed algorithms is their iterative nature. This makes them prone to an energy consumption that depends on the convergence time and on the power transmitted by each node to guarantee the network connectivity. Furthermore, in a realistic environment, the interaction among sensor is inevitably corrupted by noise which affects the final decision. In this work, we describe decentralized algorithms for implementing various processing tasks, from spatial smoothing to distributed decision, characterized by fast convergence properties, for a given network topology, and resilience against inter-sensor communication noise.","PeriodicalId":334589,"journal":{"name":"2008 IEEE 10th International Symposium on Spread Spectrum Techniques and Applications","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Distributed Processing Algorithms for Wireless Sensor Networks Having Fast Convergence and Robustness Against Coupling Noise\",\"authors\":\"S. Barbarossa, T. Battisti, L. Pescosolido, S. Sardellitti, G. Scutari\",\"doi\":\"10.1109/ISSSTA.2008.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing sensor networks with decentralized and autonomous decisions capabilities, i.e., without the need to send all the collected data to a fusion center, is a big challenge that is receiving considerable attention. One of the major drawbacks of distributed algorithms is their iterative nature. This makes them prone to an energy consumption that depends on the convergence time and on the power transmitted by each node to guarantee the network connectivity. Furthermore, in a realistic environment, the interaction among sensor is inevitably corrupted by noise which affects the final decision. In this work, we describe decentralized algorithms for implementing various processing tasks, from spatial smoothing to distributed decision, characterized by fast convergence properties, for a given network topology, and resilience against inter-sensor communication noise.\",\"PeriodicalId\":334589,\"journal\":{\"name\":\"2008 IEEE 10th International Symposium on Spread Spectrum Techniques and Applications\",\"volume\":\"193 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 10th International Symposium on Spread Spectrum Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSSTA.2008.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 10th International Symposium on Spread Spectrum Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSSTA.2008.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设计具有分散和自主决策能力的传感器网络,即不需要将所有收集到的数据发送到融合中心,是一个受到相当关注的巨大挑战。分布式算法的主要缺点之一是其迭代性。这使得它们容易产生依赖于收敛时间和每个节点传输的功率来保证网络连通性的能耗。此外,在现实环境中,传感器之间的相互作用不可避免地会受到噪声的干扰,从而影响最终的决策。在这项工作中,我们描述了用于实现各种处理任务的分散算法,从空间平滑到分布式决策,其特点是快速收敛特性,适用于给定的网络拓扑,以及对传感器间通信噪声的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Processing Algorithms for Wireless Sensor Networks Having Fast Convergence and Robustness Against Coupling Noise
Designing sensor networks with decentralized and autonomous decisions capabilities, i.e., without the need to send all the collected data to a fusion center, is a big challenge that is receiving considerable attention. One of the major drawbacks of distributed algorithms is their iterative nature. This makes them prone to an energy consumption that depends on the convergence time and on the power transmitted by each node to guarantee the network connectivity. Furthermore, in a realistic environment, the interaction among sensor is inevitably corrupted by noise which affects the final decision. In this work, we describe decentralized algorithms for implementing various processing tasks, from spatial smoothing to distributed decision, characterized by fast convergence properties, for a given network topology, and resilience against inter-sensor communication noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信