基于样条的光学漫射层析成像正演模型

Jean-Charles Baritaux, C. Seelamantula, M. Unser
{"title":"基于样条的光学漫射层析成像正演模型","authors":"Jean-Charles Baritaux, C. Seelamantula, M. Unser","doi":"10.1109/ISBI.2008.4541013","DOIUrl":null,"url":null,"abstract":"Reconstruction algorithms for Optical Diffuse Tomography (ODT) rely heavily on fast and accurate forward models. Arbitrary geometries and boundary conditions need to be handled rigorously since they are the only input to the inverse problem. From this perspective, Finite Element Methods (FEM) are good candidates to implement a forward model. However, these methods require to mesh the domain of interest, which is impractical on a routine basis. The other downside of the FEM is that the basis functions are often not compatible with the ones used for solving the inverse problem, which typically have less degrees of freedom. In this work, we tackle the 2D problem, and propose a forward model that uses a mesh-free discretization based on linear B-Splines. It combines the advantages of the FEM, while offering a fast and much simpler way of handling complex geometries. Another motivation for this work is that the underlying B-spline model is equally suitable for the subsequent reconstruction part of the process (solving the inverse problem). In particular, it is compatible with wavelets and multiresolution-type signal representations.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A spline-based forward model for Optical Diffuse Tomography\",\"authors\":\"Jean-Charles Baritaux, C. Seelamantula, M. Unser\",\"doi\":\"10.1109/ISBI.2008.4541013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconstruction algorithms for Optical Diffuse Tomography (ODT) rely heavily on fast and accurate forward models. Arbitrary geometries and boundary conditions need to be handled rigorously since they are the only input to the inverse problem. From this perspective, Finite Element Methods (FEM) are good candidates to implement a forward model. However, these methods require to mesh the domain of interest, which is impractical on a routine basis. The other downside of the FEM is that the basis functions are often not compatible with the ones used for solving the inverse problem, which typically have less degrees of freedom. In this work, we tackle the 2D problem, and propose a forward model that uses a mesh-free discretization based on linear B-Splines. It combines the advantages of the FEM, while offering a fast and much simpler way of handling complex geometries. Another motivation for this work is that the underlying B-spline model is equally suitable for the subsequent reconstruction part of the process (solving the inverse problem). In particular, it is compatible with wavelets and multiresolution-type signal representations.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"178 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

光学漫射层析成像(ODT)的重建算法在很大程度上依赖于快速准确的正演模型。任意几何和边界条件需要严格处理,因为它们是反问题的唯一输入。从这个角度来看,有限元方法(FEM)是实现正演模型的良好候选者。然而,这些方法需要对感兴趣的域进行网格化,这在日常基础上是不切实际的。FEM的另一个缺点是基函数通常与用于求解逆问题的基函数不兼容,后者通常具有较小的自由度。在这项工作中,我们解决了二维问题,并提出了一个使用基于线性b样条的无网格离散化的正演模型。它结合了FEM的优点,同时提供了处理复杂几何形状的快速和更简单的方法。这项工作的另一个动机是底层b样条模型同样适用于过程的后续重建部分(解决逆问题)。特别是,它与小波和多分辨率类型的信号表示兼容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spline-based forward model for Optical Diffuse Tomography
Reconstruction algorithms for Optical Diffuse Tomography (ODT) rely heavily on fast and accurate forward models. Arbitrary geometries and boundary conditions need to be handled rigorously since they are the only input to the inverse problem. From this perspective, Finite Element Methods (FEM) are good candidates to implement a forward model. However, these methods require to mesh the domain of interest, which is impractical on a routine basis. The other downside of the FEM is that the basis functions are often not compatible with the ones used for solving the inverse problem, which typically have less degrees of freedom. In this work, we tackle the 2D problem, and propose a forward model that uses a mesh-free discretization based on linear B-Splines. It combines the advantages of the FEM, while offering a fast and much simpler way of handling complex geometries. Another motivation for this work is that the underlying B-spline model is equally suitable for the subsequent reconstruction part of the process (solving the inverse problem). In particular, it is compatible with wavelets and multiresolution-type signal representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信